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Abstract

In this Master thesis the anticorrelation between Solar Wind velocity and the variation
in the count rate of the Pierre Auger Observatory’s low energy cosmic ray ‘Scaler’ mode
is studied. This anticorrelation was predicted theoretically by the diffusion-convection
mechanism and has already been measured by the GRAPES-3 experiment. To measure
this anticorrelation, several unrelated effects like the solar rotation and the solar magnetic
cycle are corrected and periods of extreme solar activity, as during Forbush decreases,
are removed from the analysis. Additionally, several detector-specific corrections are
applied to the Scaler data. The anticorrelation is then fit with a linear model and yields
a slope of [−6.8± 0.3 (stat.)± 0.7 (syst.)] · 10−4 % s km−1 for the fractional change of
the Scaler rate, with respect to the Solar Wind velocity. The linear model describes the
data well and a constant model can be rejected with a significance larger than 3 standard
deviations.
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1. Introduction

Solar magnetic activity influences the transport of charged particles in the interplanetary
medium within the heliosphere. Thus, the rate of cosmic rays penetrating the Earth’s
atmosphere is affected by the Sun. In the past these effects have been studied using
neutron monitors, but today, muon detectors and the low-energy modes of high-energy
observatories also can be used to study the impact of space weather on cosmic rays.
The diffusion-convection mechanism in the heliosphere predicts an anticorrelation of
cosmic ray intensity with changes in Solar Wind velocity. Recently, the GRAPES-3
experiment has published an observation of the anticorrelation of muon intensity and
Solar Wind velocity [1]. Through this work, this anticorrelation has now been validated
with data from the low-energy ‘Scaler’ mode of the surface detector of the Pierre Auger
Observatory.

In the following chapter, the basics about cosmic rays will be covered and impor-
tant past observations will be briefly stated. What an extensive air shower is and
how the Hybrid Detector of the Pierre Auger Observatory detects the secondary par-
ticles that are created when cosmic rays interact with the atmosphere will also be
explained.

In Chapter 3, the most important characteristics of the Solar Wind and the theoretical
motivation for the anticorrelation of Solar Wind velocity and cosmic ray rates will be
briefly covered.

In Chapter 4, the datasets used in this analysis, the Solar Wind velocity data provided
through NASA OMNIWeb, and two different Scaler datasets from the Pierre Auger
Observatory, will be described. The corrections applied needed to provide the data
quality required for this study are also included in this chapter.

A duplication of the analysis used for the GRAPES-3 result is then performed on a
preprocessed version of the Scaler dataset in Chapter 5. The analysis of this yields results
comparable to the GRAPES-3 study.

Finally, in Chapter 6, an independent analysis is performed on a new Scaler dataset that
was also corrected for long-term effects that would otherwise become visible as data from
a 10-year timespan is used. First, a fitting averaging time-window for both the Scaler
and Solar Wind velocity data is determined. It filters the noise on small time scales while
preserving the larger scale features. Afterwards, additional corrections are applied to the
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1. Introduction

Scaler data to remove daily oscillations, seasonal patterns, weather effects and detector
instabilities. The anticorrelation of Scaler data and Solar Wind velocity data is then fit
and the results from both the preprocessed Scaler data and the GRAPES-3 study are
verified.
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2. Cosmic rays and their detection at
the Pierre Auger Observatory

This chapter features a brief explanation of what cosmic rays are and how astroparticle
physics developed in history. In 1912 Victor Hess was able to show that the flux of
ionizing radiation increases with an increasing altitude above 300 m. This led to the
conclusion that this radiation must originate from space. This was the beginning of the
study of cosmic rays. 15 years later Dimitry Skobelzyn made cosmic rays visible in a
cloud chamber. It was in 1938 when Werner Kolhörster and co-workers [2] and Pierre
Auger and co-workers [3] discovered that high-energy cosmic rays produce extensive
air showers in the Earth’s atmosphere. This made their analysis possible for the first
time in history and laid the foundation for many modern astroparticle experiments. In
the following sections it will be explained how cosmic rays interact with the Earth’s
atmosphere and how the Pierre Auger Observatory in Argentina was designed to measure
cosmic rays.

2.1. Cosmic rays

Cosmic rays are high-energy radiation from space which hit the Earth. They consist
mostly of ionized nuclei – most prominently protons, but also nuclei of elements with
greater mass – and electrons. These particles can have energies up to more than 1020 eV
making their study extremely interesting. For comparison the current world record for
particle accelerators is held by the LHC with 6.5 · 1012 eV [4]. Many Beyond Standard
Model theories only produce predictable results for very high energies, which cosmic rays
might provide.

Mid-range energy cosmic ray particles stem from within the Milky Way and may originate
from supernova explosions. After being thrown out by such a dying star, the particles are
further accelerated by several mechanisms, e.g. the first order Fermi statistic acceleration
from astrophysical shock waves or the second order Fermi acceleration from randomly
moving interstellar magnetized clouds [5]. Still, so-called ultra-high-energy cosmic rays
(UHECR), cosmic rays with energies above 1018 eV, are so far inexplicable with no known
acceleration sites capable of reaching these energies.
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2. Cosmic rays and their detection at the Pierre Auger Observatory

Although the possible high energies of cosmic rays are promising at first sight, their study
is hindered by the dependence of the particle flux on the energy: Generally, the flux
decreases with increasing particle energy according to a power law as

dN

dE
∝ E−γ, (2.1)

with varying spectral index γ. The energy dependence of the flux of cosmic rays is
depicted in Figure 2.1.

Figure 2.1: The flux of cosmic rays as a function of the energy [6].
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2. Cosmic rays and their detection at the Pierre Auger Observatory

2.2. Extensive air showers

Cosmic rays with low energies can be measured directly with detectors on high-flying
balloons or on satellites. As the flux-diagram in Figure 2.1 shows, this gets more
problematic for higher energies of incident particles. One would either have to wait for a
long time or build huge structures with large areas in space.

When a high-energy cosmic ray – the so-called primary particle – enters the Earth’s
atmosphere it will almost certainly interact with air nuclei and initiate a casacde of
particle interactions and secondary particles, a so-called extensive air shower, illustrated
in Figure 2.2. This shower consists of different components:

• electromagnetic component: neutral pions decay into photons and produce pairs of
electrons and positrons. These then emit photons via bremsstrahlung. In addition
to that, muons produced in the shower can decay into electrons which then follow
the above process.

• hadronic component: hadronic interactions result in protons, neutrons or other
hadrons like pions and kaons.

• muonic component: pions and kaons decay into muons.

• neutrino component: neutrinos from decays of charged pions or leptons.

Secondary particles hitting the ground can be measured with arrays of particle detector sta-
tions. Additionally, the UV fluorescence light produced when charged shower particles in-
teract with atmospheric molecules can also be detected with telescopes.

2.3. Auger Hybrid Detector

The Pierre Auger Observatory experiment is named after the discoverer of extensive air
showers Pierre Victor Auger (1899-1993). It is located in the Pampas near Malargüe,
Argentina (35 ◦S, 69 ◦W, 1400 m a.s.l.) and was designed to study cosmic rays at the
highest energies. It is a Hybrid Detector as it provides two independent methods to
measure high-energy cosmic rays for cross-calibration. The structure of the Pierre Auger
Observatory is shown in Figure 2.3.

Of primary importance to this work is the Surface Detector Array, which consists of
1660 water-Cherenkov detector stations, shown in Figure 2.4, arranged in a 1500 m
spaced triangular grid covering a total area of 3000 km2. The stations are filled with
purified water which is monitored by three photomultipliers (PMTs) in order to detect the
Cherenkov-radiation that is produced by the shower particles moving at a speed exceeding
the speed of light in water. The amount of light in all stations allows a determination
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2. Cosmic rays and their detection at the Pierre Auger Observatory

Figure 2.2: Development of an extensive air shower, caused when a high-energy primary
particle interacts with the atmosphere [7].

of the energy of the primary cosmic ray particle and the detection times at different
detector stations make a reconstruction of the cosmic rays’ trajectory possible. In this
analysis only data from the Surface Detector Array will be used.

Secondly, there is the Fluorescence Detector composed of 27 fluorescence telescopes
housed at four different locations at the edges of the Surface Detector array. In moonless
nights these optical detectors can detect fluorescence light produced by collisions of
charged particles of an air shower with atmospheric nitrogen. This observation allows for
the reconstruction of the direction of the cosmic rays and a nearly direct measurement of
the total energy of the primary particle via the total amount of light emitted from the
air shower.
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2. Cosmic rays and their detection at the Pierre Auger Observatory

Figure 2.3: Structure of the Pierre Auger Observatory: fluorescence detectors (blue lines)
and surface detector stations (black dots) [8].

Figure 2.4: A surface detector station of the Pierre Auger Observatory [9].
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3. Solar Wind

Solar Wind is a supersonic stream of charged particles emitted from the Sun. Mainly it
is comprised of protons, electrons and alpha particles with energies in the keV range and
velocities of several hundred kilometres per second. The wind originates from the thermal
expansion of the solar corona against the gravitational pull of the Sun. Via this ejection
mechanism the Sun loses about 3 ·10−14m� per year [10], which is equal to ∼ 109 kg/s.
In figure 3.1 one can see how the Solar Wind interacts with the Earth’s magnetosphere.

Figure 3.1: Schematic view of the Solar Wind hitting the Earth’s magnetosphere [11].

3.1. Periodic effects

The Sun does not eject the Solar Wind uniformly across its surface, therefore solar
rotation influences Solar Wind intensities at Earth. As the Sun consists of gaseous
plasma, its rotation speed varies with latitude and is fastest at the equator. To unify the
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3. Solar Wind

studies of solar rotation Bartels’ Rotation Number was defined. It is a serial count of
the apparent rotations of the Sun since November 9th 1853 as viewed from Earth with a
defined length of exactly 27 days, which is close to the synodic Carrington rotation rate
of 27.2753 days.

In addition to that, there is also the so-called solar magnetic activity cycle, which is
the roughly 11-year periodic change of the Sun’s activity, mainly characterized by the
number and size of sunspots. Each such cycle features a solar minimum and maximum,
which can be measured in long-term studies of neutron monitors and particle detectors
and is illustrated in Figure 3.2.

Figure 3.2: 15-day averages of AoP - and pressure-corrected Scaler data (the necessary
quantities will be explained later in Section 4.1) compared with different
neutron monitor data from McMurdo, Kiel and Athens showing the global
peak at the minimum solar period [12].

3.2. Forbush decreases

A Forbush Decrease is a transient event characterized by a strong short-term depression of
the cosmic ray flux observed on Earth. Forbush decreases can be observed and identified
by neutron monitors and muon detectors; their structure is asymmetrical with a sudden
start and a smooth recovery which typically takes several days [13]. These decreases
are caused by coronal mass ejections of the Sun: large bursts of matter and magnetic
disturbances, that sweep away cosmic radiation in the heliosphere. In Figure 3.3 an
example for a Forbush decrease measurement of the Los Cerrillos neutron monitor in
correlation with the Scaler rate of the Pierre Auger Observatory (that will be explained
in Section 4.1) is presented.
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3. Solar Wind

Figure 3.3: Comparison of the pressure-corrected Scaler rate (red solid line, for a detailed
explanation of the Scaler rate and its pressure correction see Section 4.1)
with the Los Cerrillos neutron monitor rate (blue dashed line). It takes about
6 hours and 45 minutes to reach the minimum and about 9 days to fully
recover from the decrease. The recovery periods of both observables have
been fitted exponentially (red and blue dot-dashed lines), which describes the
data well [13].

3.3. Theoretically expected anticorrelation of Solar
Wind velocity and cosmic ray rate

The flux of energetic charged particles in interplanetary space can be described by the
diffusion-convection equation [14]:

∂f

∂t
= ~∇ · (D~∇f)︸ ︷︷ ︸

diffusion

− ~∇ · (~vSW · f)︸ ︷︷ ︸
convection

(3.1)

where

• f denotes the variable of interest, e.g. the concentration of cosmic rays,

• D is the diffusion coefficient, which is temperature dependent, and

• ~vSW is the Solar Wind velocity.
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3. Solar Wind

It can be derived from the continuity equation:

∂f

∂t
+ ~∇ ·~j = 0 (3.2)

where the total flux ~j has two sources:

1. the diffusive flux ~jdiffusion, which can be approximated by Fick’s first law [15] as
~jdiffusion = −D~∇f stating the flux of diffusing material is antiproportional to the
local concentration gradient and

2. the advective flux ~jadvection = ~v · f which represents an overall convection of the
material.

Substituting the total flux ~jtotal = ~jdiffusion +~jadvection into the continuity Equation (3.2)
directly yields above convection-diffusion Equation (3.1). The latter equation directly
shows that the concentration, and by that also the rate, of cosmic rays should be
antiproportional to changes in the Solar Wind velocity.
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4. Data description

As mentioned in chapter 1 the low-energy modes of astroparticle detectors can be used
to study the behaviour of galactic cosmic rays, especially their solar modulation. While
GRAPES-3 [1] uses a large-area muon detector, this analysis will use the low-energy
mode of the Surface Detector of the Pierre Auger Observatory, the so-called ‘Scaler’ mode.
For the Solar Wind data, both analyses use the same source: the NASA OMNIWeb service,
which uses data provided by three different satellites (see below).

4.1. Scaler data

On March 30th 2005 the Scaler mode was introduced for the Surface Detector array of
the Pierre Auger Observatory. Initially, it was defined as any signal above 3 counts of the
analog-to-digital converter (ADC) above the baseline of at least one of the three PMTs.
This corresponds to an energy threshold of about 15 MeV and yields an average rate over
the complete array of about 3.6 kHz per detector. This rate is read out every second and
sent to the Central Data Acquisition System to be stored in compressed files [16]. As
implemented there were two limitations:

1. At the beginning of each second, the rate is read and reset responding to a trigger
with about 100 Hz, which leads to a counting fluctuation of about 1 %, and

2. every 61 seconds, the local station is calibrated, which has a higher priority than
the Scaler reading process, resulting in pairs consisting of a ‘longer’ second (with a
spike in the rate) and a ‘shorter’ second (with a lower than average rate) around
the time of the calibration process.

To address these limitations, on September 20th 2005 the timing issues were corrected
via a software update and the Scaler rate was also redefined to count rates above 3 ADC
counts but below 20 ADC counts. This corresponds to an energy limit of about 100 MeV.
This was done to diminish the sensitivity to muon signals, which act as background noise
for the search for Gamma-Ray-Bursts (GRBs). These GRBs are of interest for several
studies, which is why the Scaler rate was redefined. From these changes, the average rate
over the array drops to about 2 kHz per detector [17]. In this analysis, only data from
the latter period with the upper threshold is used.
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4. Data description

For later use, some helpful quantities regarding the Scaler rate are defined below:

• Sphys
id : The Scaler rate of the surface detector station with identification number id

• S phys = 〈〈Sphys
id (t)〉∀id〉∀t : The whole (considered) array and time averaged Scaler

rate

• Sid = Sphys
id /S phys : The Scaler rate of the surface detector station with identifica-

tion number id normalized by S phys

4.1.1. Corrections to Scaler data

Scaler data is affected by random noise. This can be dealt with using RMS cuts, by
setting a minimum number of detector stations contributing to the average rate and by
accounting for systematic offsets that are explained in the following.

Pressure correction

It has been shown that the Scaler rate is correlated with atmospheric pressure, with a
change of −3.6± 0.2(stat) 0/00 per hPa [13]. An example highlighting this correlation is
shown in Figure 4.1.

Area-over-peak correction

The area-over-peak (AoP ) value is defined as the ratio of the deposited charge V EMq to
the peak V EMp of pulses resulting from the passage of a single vertical muon equivalent
in the water-Cherenkov detector, i.e.

AoP = V EMq

V EMp

. (4.1)

The typical signal of a single vertical muon in a water-Cherenkov detector starts with
a rapid increase (the peak) followed by an exponential decay. The decay is the result
of, one or many, reflections of the Cherenkov light by the inner walls of the detector
station. Obviously, the length of the decay (longer decay =̂ larger area) depends on
the transparency of the water, as well as the reflectivity of the inner walls of the
detector.

As expected there is a linear correlation between AoP and the Scaler rates of individual
detector stations, which is depicted in Figure 4.2. A larger AoP and therefore larger

”
tail“ in a water-Cherenkov detector signal produces more counts above the baseline of
the PMT’s ADC. A linear function like Equation (4.2) was fit to the data and by using
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4. Data description

Figure 4.1: Scaler rate averaged over time bins of 5 minutes and over all detectors in
the array (solid red line); and atmospheric pressure (dashed blue line and
reversed scale) for the first 12 days of May 2007 [13].

the resulting fit parameters a corrected Scaler rate for each station, S
corr/AoP
id , can be

obtained according to Equation (4.3):

Sid = mS,AoP · AoPid + bS,AoP (4.2)

S
corr/AoP
id (t) = Sid(t)−mS,AoP · (AoPid(t)− AoP ) (4.3)

where AoPid is the AoP value for a water-Cherenkov detector station with identification
number id and AoP = 〈〈AoPid(t)〉∀id〉∀t is the time average of AoP for the whole
(considered) array.

Scaler rates can then be calculated by simply multiplying the corrected rate with the
global average S phys. For the eight years of data between 2006 and 2013 according to [12]
the slope of the linear fit was found to be:

mS,AoP = 0.21± 0.01 (stat.) (4.4)
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4. Data description

The area-over-peak effect comes into play when looking at large time scales and is therefore
important for this analysis. This effect is seen in the 8-year comparison of the uncorrected
Scaler rate and the AoP -corrected Scaler rate in Figure 4.3. The non-constant behaviour,
namely the peak in mid-2009, is caused by solar activity, which is the main interest of
this study.

Figure 4.2: Two-dimensional histogram showing the correlation between the 5-days aver-
aged Scaler rates Sid and AoPid for data from individual WCD stations [12].

Figure 4.3: Long term profiles of the pressure-corrected normalized Scaler rate, with
(black) and without (grey) the AoP correction applied [12].
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4. Data description

4.1.2. Scaler dataset A

This dataset [13] is a raw form of the Scaler data, which is openly accessible [18]. It
will be run through the same analysis method as in the GRAPES-3 publication, as
both Scaler dataset A and the GRAPES-3 muon rates provide similar simple correc-
tions.

Close to the Scaler threshold (3 ADC counts above the baseline) some detectors can
behave unstably. Therefore, each individual second, detector stations with rates lower
than 500 counts s−1 were discarded. Secondly, periods with less than 97 % of the entire
array in operation were removed. This accounts for a loss of about 10 % of the data.
Afterwards, the average Scaler rate was computed for each station over the lifetime of
the detector. Detector stations with a RMS of more than twice the square root of that
average rate were excluded from the data. The remaining data is then corrected for
pressure according to Section 4.1.1. Finally, the rates of each detector were averaged over
15-minute intervals to remove high frequency noise, that could, for example, be produced
by lightning strikes.

4.1.3. Scaler dataset B

This dataset provides Scaler rates with many corrections already applied. It there-
fore will be used for the independent analysis as it should allow the best possible
result.

It has been corrected for both the area-over-peak effect and pressure as described in
Section 4.1.1. The provided rates have been averaged over 5 minutes. For a better data
quality, two filters are applied to the data before analysis:

1. The three PMTs of the detector station must be working and

2. the average number of working detector stations in the array must be larger than
600 within each 5 minute interval.

After the above filters the following corrections have been applied: First, the AoP
correction according to the fit result mentioned in Equation (4.4). Afterwards, all Scaler

data S
corr/AoP
id (t) more than 2.5 standard deviations from the current mean value (of

the set of data of the entire array in a 5 minute window centered at time t) has been
discarded. Second, for each 5 minute time bin, a centered moving average over 4 months
length for the number N of working detectors and the AoP values has been computed.
The respective mean values and standard deviations σN, σAoP of both quantities have
been calculated and the following cuts have been applied:
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4. Data description

• Periods where the current number of working detectors is outside of ±1σN have
been discarded and

• periods where the area-over-peak averaged over the entire detector 〈AoPid(t)〉∀id is
outside ±3.3σAoP(t) have also been rejected.

Finally, the pressure correction is performed. The pressure data used in this dataset [19]
has been taken from the Central Laser Facility, which is located in the middle of the
Surface Detector array. It has proven as the most reliable weather station and therefore
has also been used as a reference for the other weather stations of the Pierre Auger
Observatory. Weather data is available at different quality levels. The level chosen
for this dataset is ‘L1’, which means that short gaps of ∆t ≤ 18800 s are interpolated
linearly between the values at the edges of the gap. For this dataset a new linear fit
has been performed (cf. Figure 4.4) for the AoP -corrected Scaler data yielding a slope
of

mS,p = −3.0
0/00

hPa
(4.5)

so that the Scaler rate can once again be corrected via:

〈Scorr/AoP
id (t)〉corr/p

∀id = 〈Scorr/AoP
id (t)〉∀id −mS,p · (p(t)− 〈p(t)〉∀t) (4.6)

Figure 4.4: 2D histogram showing the anticorrelation between the 5-day averaged, AoP
corrected, normalized Scaler rates and atmospheric pressure [12].
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4. Data description

4.2. NASA OMNIWeb data

The Solar Wind velocity data used in this analysis is provided by the NASA OMNIWeb
service. The Solar Wind velocity data is available for 1-minute time intervals [20].
The high resolution OMNI data are built by using data from three different satellites:
ACE [21], Geotail [22] and WIND [23]. The steps followed to acquire and prepare
this data from the satellites can be found in detail in [24], however a brief outline can be
found below.

4.2.1. Input data preparations and cleaning

The data from the three satellites each cover different portions of the Scaler data between
2006 and 2015 due to their positioning in space. IMP-8, for example, can provide Solar
Wind velocity data for only 7.5 days of its 12.5 days orbit.

In addition to the different data availability, the three satellites also provide different
time averages of the data that have to be merged:

• ACE: 64-second averages

• Geotail: 48-second averages

• WIND: 92-second averages

There are both statistical and systematic differences between the different datasets. These
can be caused by having different time gaps in their averaged data, spatial gradients
in the parameters being measured combined with offsets of the spacecraft locations
relative to the flow direction of the Solar Wind, wrong time-shifts or different data
processing methods (fits or derivation from distribution functions). The systematic
differences change rather slowly, so these effects have been taken care of by using the
hourly averaged data. The WIND dataset has been chosen as the benchmark because
its parameters’ uncertainties have very well been tested by comparing proton and alpha
particle densities [25]. The other two datasets have then been fitted linearly to WIND
data [26].

Afterwards the data has been run through a despiking algorithm: For any given datapoint
xi the mean value 〈x〉 and root mean square σ(x) have been calculated for the point xi

itself and its two predecessors xi-1, xi-2 and two followers xi+1, xi+2. These values must lay
within a 60 minute range of the original datapoint, otherwise they have been removed to
eliminate huge gaps right away. In a first test, datapoints fulfilling |x− 〈x〉| > 4 · σ(x)
have been rejected. Secondly, datapoints require |x− 〈x〉| > 0.1 · 〈x〉 to remain in the
final dataset.
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4. Data description

4.2.2. Time shifting

The goal of time-shifting the Solar Wind velocity data is to account for the time difference
between the location of observation and a point close to the Earth’s magnetosphere,
called the bow shock nose. It is assumed that Solar Wind variations are organized in
a series of flat plane phase fronts convecting with the Solar Wind velocity ~vSW. Hence,
the time-shift of two observations at points P1(t1, ~r1) and P2(t2, ~r2) can be expressed
as

∆t = ~n · (~r2 − ~r1)
~n · ~vSW

(4.7)

where ~n is the so-called phase front normal. The determination of the phase front normals
is a difficult process involving minimum variance analysis and certain modifications of it,
which shall not be described in detail here but can be found in [27].

4.2.3. Building 1-minute averages

The output data is tagged at the start of every minute. As the input data averages
cover different time spans, a 1 minute average of the output data can contain data
from up to 3 seperate input data time averages. Because of this, a weighted average
is needed. This problem is depicted in Figure 4.5. For every datapoint contributing
to one output minute the fraction of the current output minute covered by that input
datapoint is calculated and applied as a weight to that input period and the weighted
average of all contributing datapoints is calculated. Similarly, a weighted variance is
computed.

Figure 4.5: Example for averaging Geotail data (48 second averages): The desired
output average spans from 0 s to 60 s. Assuming that input sample 2 is
centered in that minute, sample 2 contributes to a fraction of 48

60 , while 1 and
3 contribute to 6

60 each.
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5. Simple analysis with few corrections

The main purpose of this study is to either verify or disprove the GRAPES-3 result [1]
of the anticorrelation of the Solar Wind velocity variation with cosmic ray intensity. In
this chapter their experimental setup and methods of data treatment will be explained.
Afterwards, the analysis of GRAPES-3 is applied to the Scaler data of the Pierre Auger
Observatory. Here, the Auger Scaler dataset A (cf. Section 4.1.2) is used, as it provides
similar basic cuts for data quality and its rather low resolution of 15 minutes is sufficient.
The results are compared to those of GRAPES-3.

5.1. GRAPES-3 experiment

The GRAPES-3 (= Gamma Ray Astronomy PeV EnergieS phase-3) experiment is
located at Ooty (11.4 ◦N, 76.7 ◦E, 2200 m a.s.l.) in India. It has two detectors to measure
the flux of cosmic rays: Firstly, a dense air shower array of 400 scintillation detectors
with an area of 1 m2 each at an 8 m spacing, whose task is to measure the energy of
primary cosmic rays in an energy range of 10 TeV to 100 PeV. Secondly, a large muon
detector with an area of 560 m2 to determine the composition and the energy spectra
of the muon content of cosmic ray showers. The latter is also used to measure the
modulation of cosmic rays by solar activity and provides all data for the anticorrelation
analysis. The detector consists of 16 modules with an area of 35 m2 each, which each
contain 232 proportional counters arranged in four layers of 58 counters each. These
are separated by a concrete layer, resulting in an energy threshold of 1 GeV for vertical
muons.

Every 10 s the number of incident muons is recorded and hourly averaged data of six
complete years from 2000 to 2005 is used in their analysis.

5.2. GRAPES-3 data treatment

The effect of instrument problems resulting in e.g. gaps and gain variation in the muon
rate is first taken care of by rejecting any hourly data deviating more than 10 times the
RMS from the overall average. Afterwards, the mean and RMS are recalculated and data
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5. Simple analysis with few corrections

with a deviation greater than 5 times the RMS is thrown out. A pressure correction is
then applied to the data. The hourly muon rates are then converted to fractional changes
from the six-year mean of the remaining data.

To remove the period modulation due to the solar rotation, a centered moving average is
used. For every hourly intensity the centered moving average of 26 days is calculated
which afterwards is averaged to daily values. In Figure 5.1(a) the daily data for muon
intensity and the Solar Wind velocity as well as the values of their centered moving
averages are shown.

(a) GRAPES-3 data

(b) Scaler rate of the Pierre Auger Observatory

Figure 5.1: Daily variation in (a) muon intensity ∆Iµ as measured by GRAPES-3
(relative to respective 6-year mean) [1] and (b) Scaler rate ∆S (relative to
respective 10-year mean) and Solar Wind velocity vSW. The solid lines show
the corresponding 27-day centered moving average.
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5. Simple analysis with few corrections

After that, the combined daily value of the centered moving average is substracted from
the data. Finally, Forbush decreases are removed. This is done using data from the
Kiel neutron monitor (see [28]): for each day i the neutron intensity Ii and the mean
intensity of the previous three days (i− 1), (i− 2), (i− 3) called I3di is computed. If the
relative decrease in intensity I3di−Ii

I3di is greater than 2 %, then data from day i is rejected.
The days following day i are rejected until the intensity again surpasses the value of
0.3 · Ii + 0.7 · I3di, which corresponds to a 70 % complete recovery from the Forbush
decrease. As only ‘complete’ days with data for all 24 hour intensities for all three data
sets (muon, Solar Wind velocity and neutron monitor data) are considered, only 2117 days
of initially 2192 days survive. The resulting data is shown in Figure 5.2(a). It displays a
flat profile as periodic and transient effects have been removed.

Similar methods of data cleaning have been applied to Scaler dataset A (see Section 4.1.2).
The RMS cuts are not necessary because the dataset is already filtered to eliminate bad
data due to malfunctioning as was described in Section 4.1.2. From the high-resolution 1-
minute averaged OMNIWeb data 15-minute averages have been computed to be matched
to the 15-minute Scaler data. Demanding ‘complete’ days is impossible with this Solar
Wind velocity dataset, therefore 15-minute intervals are demanded to have at least 8
minute-long entries, otherwise they will be rejected. Unfortunately, the Scaler data has a
lot of gaps, so that when averaging Solar Wind velocity and Scaler data for daily values
both are required to have data for at least 50 % of each day, otherwise data from that
day is rejected completely. Running means are computed and subtracted and Forbush
decreases are filtered out using data from the McMurdo neutron monitor [29], because the
Kiel neutron monitor was lacking data for the time span of the Scaler data (2006-2015).
After the entire cleaning process there are 3116 days of data left.

The resulting analogous plots can be found in Figure 5.1(b) and Figure 5.2(b). Comparing
both plots in Figure 5.1 one can see that the centered moving averages resemble the data
well. Looking at Figure 5.2 the variation of the muon / Scaler rate is flat and in the
range of about 1 % for both experiments. In addition to that, the variation in the solar
wind is similar at about 200 km

s
for both experiments.

5.3. Comparison of GRAPES-3 muon intensity and
Scaler data results

After applying all cuts mentioned above, the correlation of CR intensity and Solar Wind
velocity is calculated. In Figure 5.3 a scatterplot comparison of both experiments is
displayed. Although the general trend of the data seems comparable, the fluctuation of
data seems to be a bit higher for the Scaler data.
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5. Simple analysis with few corrections

(a) GRAPES-3 data

(b) Scaler rate of the Pierre Auger Observatory

Figure 5.2: Daily variation after high pass filter: (a) muon intensity ∆Iµ as measured
by GRAPES-3 (relative to respective 6-year mean) [1] and (b) Scaler rate
∆S (relative to respective 10-year mean) and Solar Wind velocity deviation
∆vSW (from the respective mean value).

Afterwards, the daily data of GRAPES-3 was combined into 41 bins, each containing
data from 43 d sorted in order of ascending vSW. Analogously, the Scaler data is combined
into 73 bins of 43 days each to have a comparable amount of final datapoints (the last
bin only has 20 entries). The final plots in Figure 5.4 feature linear fits, which reasonably
describe the data for both experiments. The results for the slope parameter listed
below.
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(a) GRAPES-3 data

(b) Scaler rate of the Pierre Auger Observatory

Figure 5.3: Correlation of (a) muon intensity variation ∆Iµ as measured by GRAPES-
3 [1] and (b) Scaler rate ∆S with Solar Wind velocity ∆vSW including linear
fits.

mGRAPES
corr = [−13.3± 0.7 (stat.)] 10−4%

km · s−1

mScaler,A
corr = [−9.0± 0.6 (stat.)] 10−4%

km · s−1

(5.1)

One can see that the effect is very small: For a typical change of Solar Wind velocity
of about 200 km

s
a relative deviation of ∼ 0.2 % from the mean value of muon / Scaler

rate is expected. Both results significantly differ from the null-hypothesis of a constant
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5. Simple analysis with few corrections

function, which would be expected if there is no correlation at all. However, both results
are not compatible within the error ranges of the fit parameter.

(a) GRAPES-3 data

(b) Scaler rate of the Pierre Auger Observatory

Figure 5.4: (a) Muon intensity variation ∆Iµ as measured by GRAPES-3 [1] and (b)
Scaler rate correlated with Solar Wind velocity ∆vSW after binning into
43-day intervals.
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5. Simple analysis with few corrections

The linear fit (cf. Figure 5.4(b)) of the Scaler data has a reduced χ2 of 1.17 which shows,
that the uncertainties are estimated correctly and the model describes the data well.
Additionally, a constant function is fit to the data, but this model can be ruled out due
to its high reduced χ2 of 3.87. The different results for the slope can have two reasons:
Either there is a physical reason for them two be different, e.g. the anticorrelation slope
could depend on the location on Earth, or one of the results is wrong. To verify the
result using Scaler data and to potentially lower the uncertainty on the slope parameter,
an independent analysis of the Scaler data with different methods and more systematic
cuts will be presented in the next chapter.
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6. Independent analysis of the
anticorrelation

Although the anticorrelation could already be shown with Scaler dataset A, the uncertainty
on the fit result is larger than expected. With Scaler data spanning 10 years (4 years
more than GRAPES-3 had), it should be possible to lower the uncertainty on the
anticorrelation result by conducting an independent analysis and by using Scaler dataset
B, which has more recently studied systematical corrections like the AoP -correction
already applied. The data is smoothed to filter small scale statistical fluctuations while
not reducing the signal on a larger scale.

6.1. Determining a time-window

For the GRAPES-3 analysis the Solar Wind velocity and muon rate time window was
set to 60 min without further explanation and later averaged again over 24 h. This section
is dedicated to the search for the best fitting time-window δt for both Scaler and Solar
Wind velocity data.

First, 10 random time-frames of data from 10 different years i with i = 2006, . . . , 2015
are picked at random. The spread in years is needed to avoid a dependence on the solar
magnetic cycle. The length of the time-frame is 27 days to minimize the effects from
solar rotation. This means, that one data sample, in theory, contains 38880 Solar Wind
velocity data entries (1-minute averaged data) and 7776 Scaler data entries (5-minute
averaged data). In practice, there are less entries as both datasets occasionally have small
gaps. For every random sample a running mean is computed for every datapoint (so for
every minute or every five minutes respectively) using a δt of varying length (5 min to
120 min). It will be tested for which length of δt the running mean fits best to the data.
This result for δt will afterwards be used as the averaging time window for both Scaler
and Solar Wind velocity data.

An example comparing running means of width δt = 10 min, 30 min, 120 min for the Solar
Wind velocity data is shown in Figure 6.1. However, only the first 5000 min of the full
38880 min from the 27-day period are shown to make the details visible. The quality of
the running mean curve is characterized by two properties:
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6. Independent analysis of the anticorrelation

1. How well the running mean resembles the original data and

2. how smooth (i.e. small fluctuations and noise filtered out) the curve is.

(a) δt = 10 min

(b) δt = 30 min

(c) δt = 120 min

Figure 6.1: First 5000 min of a random 27 d sample of Solar Wind velocity data starting
on 22.03.2009 at 08:04. 1-minute averages provided by OMNIWeb (green
dots) and running mean with lengths of 10, 30, and 120 minutes (black lines).
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6. Independent analysis of the anticorrelation

For the first example one can see that the 10-minute running mean curve (see Figure 6.1(a))
is very close to the original data, but there still is some noise included. Using a 120-minute
running mean (see Figure 6.1(c)), some features of the original data – variations in Solar
Wind velocity of up to 30 km

s
– are lost. This information loss is especially visible in the

period between 500 min and 1000 min. For the Solar Wind data, a 30-minute running
mean δt as in Figure 6.1(b) seems to be best: It filters the noise on small time scales
while preserving the larger scale features. Additional plots for different values of δt and
for different years can be found in Appendix A.1.

For a second example, the running mean of Scaler data with a length of δt = 10 min,
30 min and 120 min is presented in Figure 6.2. Some of the datapoints are far from the
running mean and cause spikes in the running mean data that do not vanish until δt is
increased to at least 90 min. Additional plots for different values of δt and for different
years can be found in Appendix A.1.

To quantify the two characteristics mentioned above (resembling the original data and
smoothness), the following quantities are defined:

1. |∆v|: The 27-day average of the difference between the running mean and the
original Solar Wind velocity data.

2. |∆S|: The 27-day average of the difference between the running mean and the
original Scaler data.

3. σv,dt: The average standard deviation of the running mean Solar Wind velocity
data when binned into time-windows of length dt.

4. σS,dt: The average standard deviation of the running mean Scaler data when binned
into time-windows of length dt.

In addition to the length δt of the running mean, the time-window dt for computing a
standard deviation is introduced. Clearly, the smaller δt is, the lower the |∆v| and the
|∆S| of the running mean data. In the limit δt → 0 the deviations would all be zero.
On the contrary, the smaller the length of δt, the larger σv,dt and σS,dt tend to be. With
shorter running mean lengths the running mean data inherits the random fluctuations of
the 1-minute or 5-minute averaged original data. Finding the right time-window length
dt for the running mean standard deviations is difficult, because it is related to finding
the right running mean length δt. Hence, time-windows of length dt varying from 15 min
to 120 min are used. For each time-window dt and each randomly chosen datasample
the dependence of |∆v| and σv,dt (and |∆S| and σS,dt respectively) on δt is tracked. Both
graphs are fit with logarithmic function a · ln (δt− b) + c which is chosen, because it
describes the data well.
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6. Independent analysis of the anticorrelation

(a) δt = 10 min

(b) δt = 30 min

(c) δt = 120 min

Figure 6.2: Random 27 d sample of Scaler data starting on 26.02.2011 at 13:35 with the
original 5-minute averages (red dots) and the running mean with lengths of
10, 30 and 120 minutes (black lines).
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6. Independent analysis of the anticorrelation

The intercept point of both fits – i.e. the point where the average difference of running
mean data from the original data is the same as the average standard deviation of the
running mean data themselves – provides a good choice of δt for each dataset. An
example of this procedure carried out on the Solar Wind velocity data is illustrated in
Figure 6.3.

Figure 6.3: Dependence of |∆v| (blue dots) and σv,75 (blue triangles) on the length of δt
for a random Solar Wind data sample taken from 2009.

For dt = 15 min, the starting value for |∆v| was already higher than that of σv,dt. This
data is not included in the study, as the extrapolations of the fits with δt < 5 min cannot
be trusted to correctly estimate the time. All other results for the intercepts of Solar
Wind velocity data are listed in Table 6.1.

The mean value of the intercept of both graphs is dependent on the length of the time-
window that is used to compute σv,dt and it seems to grow linearly with the length of
that interval dt. However, by looking at the data, any running mean length δt < 15 min
seems too low and is too close to the Scaler data time interval of 5 min to provide a mean
value with a good statistical uncertainty.

An example for the two fits using Scaler data is shown in Figure 6.4, using a random data
sample from 2011 and dt = 75 min. In Table 6.2 the intercepts for varying values of dt
are listed. They show the same behaviour as before: With increasing dt the intercept also
increases. The mean intercept points of Scaler data for a fixed dt are always higher than
their respective counterparts for the Solar Wind velocity data. The difference between
both mean intercept values also increases for increasing dt. Additional plots for different
values of δt and for different years can be found in Appendix A.1.
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6. Independent analysis of the anticorrelation

Table 6.1: Solar wind data: intercepts of the |∆v| and σv,dt fits for all datasamples
depending on dt. Averages for a fixed dt in green highlighted cells.

dt = 30 min dt = 45 min dt = 60 min dt = 75 min
sample intercept sample intercept sample intercept sample intercept

year [min] year [min] year [min] year [min]
2006 6.9 2006 10.7 2006 14.9 2006 19.0
2007 7.0 2007 10.1 2007 14.5 2007 17.3
2008 6.7 2008 10.9 2008 15.6 2008 19.9
2009 6.6 2009 10.6 2009 15.1 2009 19.7
2010 5.6 2010 8.4 2010 11.7 2010 15.3
2011 5.1 2011 7.6 2011 10.6 2011 14.1
2012 4.5 2012 5.4 2012 7.7 2012 10.3
2013 6.6 2013 10.3 2013 15.2 2013 19.4
2014 7.0 2014 10.5 2014 13.8 2014 17.4
2015 5.9 2015 8.3 2015 11.1 2015 14.0

6.2 9.3 13.0 16.6

dt = 90 min dt = 105 min dt = 120 min
sample intercept sample intercept sample intercept

year [min] year [min] year [min]
2006 24.3 2006 28.4 2006 33.4
2007 21.5 2007 25.8 2007 29.6
2008 24.0 2008 29.9 2008 34.5
2009 23.4 2009 28.3 2009 34.2
2010 19.9 2010 23.6 2010 26.6
2011 17.2 2011 20.0 2011 24.6
2012 13.4 2012 16.3 2012 18.9
2013 25.7 2013 28.4 2013 38.4
2014 21.5 2014 24.3 2014 28.7
2015 17.8 2015 20.7 2015 23.5

20.9 24.6 29.2
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Table 6.2: Auger Scaler data: intercepts of the |∆S| and σS,dt fits for all datasamples
depending on dt. Averages for a fixed dt in green highlighted cells.

dt = 30 s dt = 45 s dt = 60 s dt = 75 s
sample intercept sample intercept sample intercept sample intercept

year [min] year [min] year [min] year [min]
2006 13.3 2006 18.2 2006 23.4 2006 30.8
2007 10.8 2007 14.4 2007 19.1 2007 22.7
2008 10.7 2008 13.5 2008 20.1 2008 27.2
2009 8.1 2009 10.6 2009 13.3 2009 15.2
2010 10.5 2010 13.7 2010 16.8 2010 21.4
2011 12.3 2011 16.6 2011 20.7 2011 23.8
2012 9.2 2012 11.7 2012 14.8 2012 17.7
2013 14.3 2013 17.8 2013 23.8 2013 27.8
2014 15.8 2014 21.8 2014 28.9 2014 32.3
2015 12.9 2015 19.1 2015 27.4 2015 36

11.8 15.7 20.8 25.5

dt = 90 s dt = 105 s dt = 120 s
sample intercept sample intercept sample intercept

year [min] year [min] year [min]
2006 36.2 2006 45.6 2006 52.7
2007 37.5 2007 33.2 2007 40.8
2008 31.3 2008 37.4 2008 45.6
2009 18.4 2009 22.4 2009 25.0
2010 24.8 2010 27.3 2010 33.9
2011 32.0 2011 37.2 2011 41.4
2012 18.9 2012 22.3 2012 24.9
2013 29.9 2013 36.1 2013 37.8
2014 37.8 2014 42.4 2014 52.2
2015 45.4 2015 59.7 2015 72.2

31.2 36.4 42.6
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6. Independent analysis of the anticorrelation

Figure 6.4: Dependence of |∆S| (red dots) and σS,75 (red triangles) on the length of δt
for a random Scaler data sample taken from 2011.

These results make it difficult to give a precise answer for the averaging time-window
δt. However, a minimal averaging time-window of δt = 30 min can be demanded of both
the Scaler and Solar Wind data. The δt will remain a parameter for the entire analysis,
although mainly the results for δt = 30 min will be discussed. To study the systematic
effect of the choice of δt, the analysis will be performed with the set of values (30, 45, 60,
75, 90) minutes for δt which is balanced distributed around the GRAPES-3 value of
60 min.

6.2. Scaler data treatment

There are some phenomena that only affect the Scaler data and have to be corrected for
before starting the correlation analysis. Their origin and effect on the data are discussed
in the following sections.

6.2.1. Removing transient effects

To remove periods that are affected by Forbush decreases from the data, the same
algorithm as explained in Section 5.2 is applied. Furthermore, lightning periods [30] and
so-called ‘bad periods’ [31] are discarded as they pose major acquisition instabilities of
the surface detector.
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The percentage of data lost per year due to each of the different criteria is listed in
Table 6.3. As an example the gaps for 2015 are visualized in Figure 6.5 (data gaps for the
other years can be found in Appendix A.2). Forbush decreases often last for 10 days or
more, while bad periods or lightning periods mostly last only for few hours. One notices
that bad periods and lightning periods often overlap, however they do not necessarily
depend on each other. The stacked histogram in Figure 6.6 shows the relative losses
due to Forbush decreases, lightning periods outside of Forbush decrease times and bad
periods outside of Forbush decreases or lightning periods (also visible as gray highlighted
columns in Table 6.3).

Figure 6.5: Scaler data availability (first row, red) and periods that are removed from
the data due to Forbush decreases (second row, orange), lightning periods
(third row, purple) and ‘bad periods’ (fourth row, dark blue) for 2015.

Figure 6.6: Relative loss of Scaler data for the years 2006-2015 for Forbush decreases,
lightning periods and bad periods applied subsequently.
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Table 6.3: Fractions of Scaler data influenced by Forbush decreases (FD), lightning periods
(LP) and ‘bad periods’ (BP) for years 2006-2015. With ‘LP \ FD’ all lightning
periods not removed due as Forbush decreases are denoted. Similarly ‘BP \
(FD ∪ LP)’ stands for all bad periods not removed due to Forbush decreases
or lightning periods.

year FD [%] LP [%] LP \ FD [%] BP [%] BP \ (FD ∪ LP) [%]

2006 4.37 1.50 1.31 0.76 0.52

2007 0 3.33 3.33 0.37 0.06

2008 0 3.39 3.39 1.19 0.85

2009 0 2.08 2.08 3.97 3.82

2010 1.04 2.68 2.68 0.13 0.01

2011 19.45 3.51 3.25 0.40 0.01

2012 28.51 3.56 2.08 1.44 0.78

2013 12.07 3.83 3.26 0.46 0.10

2014 24.21 3.79 2.21 0.89 0.07

2015 14.71 4.24 3.85 2.87 1.65

6.2.2. Removing daily patterns

The Scaler rate of the surface detector stations has been observed to feature a daily
oscillation [32]. This daily pattern also changes depending on the season. Therefore, the
relative deviation from the mean daily Scaler rate in a certain month of the year as a
function of UTC hour of day has been averaged over the entire dataset and it is binned
with the time-window δt as bin width. An example using a time-window of 30 min is
shown in Figure 6.7. It displays the daily oscillation in January and July corresponding to
summer and winter in Argentina (data for other months can be found in Appendix A.2).
The overall variations are within ±0.4 %. While this is small, it is still on a similar
order as the anticorrelation with Solar Wind velocity and would therefore produce an
unwanted bias. The peak of the distribution occurs at about 15:00 UTC, which is 12:00
Argentina time, showing correlation with the position of the sun in the sky. In January,
the averaged deviation rises above 0 at about 10:00 UTC and stays positive until 19:00
UTC. In contrast to that, the average deviation in July is only positive between 12:00
UTC and 19:00 UTC. This can be explained by seasonal effects: In the Argentinean
summer the sun is up longer than in the winter which widens the peak in the daily
oscillation. To correct for this daily oscillation, Scaler rates of time bin i will be multiplied
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with (1− Sdaily,i), where Sdaily,i is the bin content of the i-th bin of the average deviation
histograms mentioned above.

(a) January

(b) July

Figure 6.7: Average deviations from the daily mean Scaler rates for a chosen time-window
of 30 min for (a) January and (b) July.
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6.3. Minimal required entries

Finding the right time-window for the analysis has been difficult, but, as mentioned
earlier, it is kept between 30 min and 90 min. There will be no further averaging applied
unlike in the GRAPES-3 analysis, where daily averages and later on even multi-day
averages have been formed. An absolute minimum of 2 entries per time bin are required
since otherwise a sample standard deviation could not be defined.

The main motivation for the independent analysis is to use the larger statistics of the
Scaler data in the anticorrelation fit and obtain a result with a higher precision than the
GRAPES-3 result. This should be possible as the Scaler dataset covers a larger time
span than that available to GRAPES-3. To lower the uncertainty on the mean value of
the averaged data, the minimum number of data entries per time bin can be raised well
above the bare minimum of 2. Enforcing stricter requirements like this increases the loss
of data, as for most time bins data are not available for the entire length of the bin due
to the various cuts applied to the data which have been performed before averaging over
δt.

To determine the optimal trade-off between data loss and improving the statistical
uncertainty, the distribution of entries in a given time binning is analyzed. In Fig-
ure 6.8 the entry distributions of the Scaler data are shown. In this example the
distribution of the number of entries for time bins of 30 min (see Figure 6.8(a)) will be
used:

Due to the various cuts that are applied to the data, ∼ 41 % of all 30-minute bins of the
years 2006-2015 do not have data. With increasing averaging length δt, the number of
empty bins decreases to ∼ 38 % at δt = 90 min. With this time-window length there are
very few 30-minute intervals with only 1 or 2 entries, only making up about 1 % of the
full 10 years. Therefore, a minimum of 3 entries is set as a requirement to include data
for the 30-minute averages. Having few time intervals with few entries until a certain
threshold is also true for other choices of δt, as can be seen in Figures 6.8(b) to 6.8(e).
Therefore, to provide a lower uncertainty of the mean value, which decreases as the
square root of the number of entries, these thresholds are set as a requirement for the
minimal number of entries.

Looking at the corresponding plots for Solar Wind velocity data in Figure 6.9, there are
two striking differences: First, the number of empty bins is below 5 % for all δts and there
is no threshold behaviour. Second, the percentage of bins that have one or more data
points increases with the number of entries until a maximum is reached. The position of
the maximum is between 90 % and 100 % of the respective maximal number of entries.
That means, if one time-window of length δt is picked at random, the probability that
there is data available for about 90 % of the chosen time interval, is maximal among
all other portions of data available. To avoid bias, for every δt, the threshold values of
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(a) δt = 30 min

(b) δt = 45 min (c) δt = 60 min

(d) δt = 75 min (e) δt = 90 min

Figure 6.8: Distribution of Scaler data entries per averaging time-window, varying from
δt = 30 min to δt = 90 min.

the Scaler data are calculated and the same resulting portion of data is correspondingly
set as the minimal requirement for number of entries in the Solar Wind data. Consider
δt = 30 min as an example: The threshold value of the Scaler data is 3 entries, which
provides 3 · 5 min = 15 min of data, which is 50 % of the complete time span. Hence,
a minimum of 15 entries is set as a requirement for Solar wind data due to the given
1-minute averaged data. All minimal required entries for both datasets are listed in
Table 6.4.

39



6. Independent analysis of the anticorrelation

(a) δt = 30 min

(b) δt = 45 min (c) δt = 60 min

(d) δt = 75 min (e) δt = 90 min

Figure 6.9: Distribution of Solar wind velocity data entries per averaging time-window,
varying from δt = 30 min to δt = 90 min.

Table 6.4: Minimum required entries depending on δt.

dataset
δt [min]

30 45 60 75 90
Scaler 3 4 7 9 11

Solar wind velocity 15 20 35 45 55
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6.4. Variance analysis

After all above considerations related to time averaging and data cleaning the distribution
of the variance from all data periods is studied to see if it behaves reasonably and to see
if there are any effects left which cause irregularly high noise. In Figure 6.10 cumulative
distributions of the variances of both datasets are displayed. In general, the variance
behaves very smoothly, there are no sudden gains. About 98% of Scaler data has a
variance less than 100 1

s2 and 90% of Solar Wind velocity data has a variance less than

100 km2

s2 . The plots do not show all entries; with decreasing δt the number of entries in
overflow increases from 3 up to 200 for the Scaler data, and ranges between 74 and 97
for the Solar Wind velocity data.

(a)

(b)

Figure 6.10: Cumulative distributions of the variance of (a) the Scaler data and (b) the
Solar Wind velocity data.
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6. Independent analysis of the anticorrelation

However, the big dependence of the Scaler data on the hour of day, as discussed in
Section 6.2.2, gives reason to study the daily variation of its variance. The distribution
of 30 min data bins with variances higher than 100 1

s2 (and 100 km2

s2 respectively) are
depicted in Figure 6.11. In Figure 6.11(a) it is clearly visible that the vast majority
of high-variance Scaler data is in the hour surrounding midnight. This pattern holds
for all values of the averaging length δt. The reason for this behaviour is unclear, but
the data is made unnecessarily worse by this effect. On the other hand, the high-
variance Solar Wind velocity data shows no clear correlation with the hour of day (see
Figure 6.11(b)). Data for other choices of δt can be found in Appendix A.3. Therefore,
as a final cut to the data, the first and last average values for each day are removed from
the data, as they have vastly more entries with high variances that cannot be explained
or corrected.

(a)

(b)

Figure 6.11: Variance distribution depending on time of day for (a) the Scaler data (using
a logarithmic scale) and (b) the Solar Wind velocity data (δt = 30 min).
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6. Independent analysis of the anticorrelation

6.5. Results

With the full data cleaning and selection of Sections 6.1 to 6.4 applied, the correlation
analysis can be performed. First, the observables have to be defined:

• Sδt: The Scaler rate, in units of 1
s
, from dataset B after all cuts and averaged over

the array and a time span δt (given in minutes).

• µS,δt: The 10-year mean of all corrected Scaler rates Sδt for a given δt.

• δSδt = Sδt−µS,δt
µS,δt

: The fractional deviation of a certain Sδt,i from µS,δt.

• vSW,δt: Solar Wind velocity, in units of km
s

, averaged over a time span δt.

The 27 d solar rotation is an unwanted effect in the data. To get rid of it, again a
centered moving average with length of exactly 27 d is computed for every datapoint
for both datasets, i.e. every 30 min to 90 min depending on the data averaging length
δt. Analogous to the above quantities, the 27 d running mean data R (Sδt), R (δSδt) and
R (vSW,δt) are defined. This leads to two definitions:

• δS∗δt = δSδt − R (δSδt) = Sδt−R(Sδt)
µS,δt

: The difference of the fractional deviations of

the Scaler rate and its corresponding centered moving average for a given δt.

• v∗SW,δt = vSW,δt − R (vSW,δt): The difference of the Solar Wind velocity and its
corresponding centered moving average for a given δt.

The uncertainties of these two quantities can be computed via error propagation. For
any running mean R with nR contributing datapoints xi, each with an uncertainty
∆xi themselves, the uncertainty of R, ∆R, is given by Equation (6.1). The uncer-
tainty of µS,δt, ∆µS,δt, with nµ contributing datapoints and sample standard deviation
σµ, can be calculated via Equation (6.2). With both ∆Sδt and ∆vSW,δt in hand the

uncertainties ∆ (δS∗δt) and ∆
(
v∗SW,δt

)
can be calculated as shown in Equations (6.3)

and (6.4):

∆R =
√∑

i ∆x2
i

nR
(6.1)

∆µS,δt = σµ√
nµ

(6.2)

∆ (δS∗δt) =

√√√√(∆Sδt
µS,δt

)2

+
(

∆R (Sδt)
µS,δt

)2

+
(

[Sδt −R (Sδt)] ·∆µS,δt
µ2
S,δt

)2

(6.3)

∆
(
v∗SW,δt

)
=
√

∆v2
SW,δt + ∆R (vSW,δt)2 (6.4)
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6. Independent analysis of the anticorrelation

In Figure 6.12 the time evolution of δSδt and vSW,δt and their corresponding 27 d centered
moving average data are depicted for δt = 30 min (data for other choices of δt can be
found in Appendix A.4).

Figure 6.12: Variation in Scaler rate (red points in upper graph) and Solar Wind velocity
(blue points in lower graph) including the respective centered moving average
of the data (solid black lines) for δt = 30 min.

One can see that the variation of the Scaler rate is within ±3 % of the overall mean rate
while the Solar Wind velocity varies on a scale of up to ±300 km

s
. The running mean

graphs form a good average for the fluctuations of both datasets. To show that a 27 d
centered moving average mitigates the contributions from solar rotation, Figure 6.13
shows the dependency of Solar Wind velocity data depending on the day of the solar
rotation cycle. To produce these histograms, the full 10 years of data has been divided
into 27 d segments and the 30-minute averaged Solar Wind velocity data and their
corresponding centered moving average data have been sorted into daily bins by day of
the solar rotation cycle. The mean deviation from the respective 27 d mean is calculated
for each of these sets of binned data. The upper histogram of Figure 6.13 shows a pattern
of three oscillations with magnitudes of up to 15 % of the 27 d mean. The centered
moving average data (lower histogram of Figure 6.13) smooths this pattern and shows a
maximum deviation of only 1 % from the mean.
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6. Independent analysis of the anticorrelation

Figure 6.13: 30-minute averaged Solar wind velocity data (upper histogram) and the
corresponding 27 d centered moving average of the data (lower histogram)
binned according to the day of the solar rotation cycle.

The time evolution of δS∗30 and v∗SW,30 after substracting out the centered moving average
is shown in Figure 6.14 (data for other choices of δt can be found in Appendix A.4).
Both of these datasets show statistical fluctuations around 0. These data will be used to
test the anticorrelation.

Figure 6.14: Variation in Scaler rate (red points in upper graph) and Solar Wind velocity
(blue points in lower graph) after subtracting the respective centered moving
average data for δt = 30 min.
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6. Independent analysis of the anticorrelation

In Figure 6.15 a 2D histogram of δS∗30 and v∗SW,30 is presented (data for other choices of
δt can be found in Appendix A.4). Also shown is a profile line for each bin of v∗SW,30
representing the mean value and its uncertainty for all δS∗30 in that bin. Although a
linear fit has not been performed, the trend of the profile line hints at an anticorrelation
between both quantities, as it decreases as velocity increases from −150 km

s
to 250 km

s
.

Outside of that interval, the statistics are very low and large random fluctuations can be
seen in the profiles.

The anticorrelation between δS∗30 and v∗SW,30 is fit via Equation (6.5). The data overlaid
with the result can be seen in Figure 6.16 below, while the fit results for the range
of δt values can be seen in Table 6.5 (data for other choices of δt can be found in
Appendix A.4).

f(v∗SW,δt) = mδt · v∗SW,δt + bδt (6.5)

Table 6.5: Linear fit parameter results depending on δt.

δt [min] mδt[ 10−4 %
km s−1 ] bδt[10−3 %] χ2/ndf

30 -7.99 ± 0.01 3.9 ± 0.1 104.02
45 -8.72 ± 0.02 3.4 ± 0.2 86.77
60 -8.03 ± 0.02 4.6 ± 0.2 115.02
75 -8.31 ± 0.02 4.0 ± 0.2 106.53
90 -8.52 ± 0.03 6.1 ± 0.2 108.40

The calculated uncertainties for most datapoints are very small and the linear fits return
very large reduced χ2 values. However, the slopes of the anticorrelation of Scaler rate and
Solar Wind velocity have have small uncertainties and similar values for each δt which
suggests stability of the result. To be able to specify a significance for the anticorrelation,
a constant cδt is fit to the same data. The results for the range of δt values can be seen
in Table 6.6. The constants also have small uncertainties, but their reduced χ2 values are
always higher, and by that, worse, than the corresponding values of the linear fit. This
shows that the linear fit is slightly better compatible with the data, but both models
(anticorrelation and constant) would fail a hypothesis test due to the reduced χ2 values
above 100.
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6. Independent analysis of the anticorrelation
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6. Independent analysis of the anticorrelation
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6. Independent analysis of the anticorrelation

Table 6.6: Constant fit parameter results depending on δt.

δt [min] cδt[10−3 %] χ2/ndf
30 4.0 ± 0.1 107.52
45 3.4 ± 0.2 90.00
60 4.9 ± 0.2 119.05
75 4.3 ± 0.2 110.07
90 6.5 ± 0.2 112.58

Finally, the data is sorted by its v∗SW,dt values in ascending order and binned so that the
sum of times covered by each bin is exactly 43 days like in the GRAPES-3 analysis.
As an example, for δt = 30 min a total of 43·1440 min

30 min = 2064 datapoints go in each
bin. The data is then fit with both a linear function and a constant. The data for
δt = 30 min is shown in Figure 6.17 (data for other choices of δt can be found in
Appendix A.4).

The uncertainties in δS∗30 are a bit too high and the uncertainties in v∗SW,30 are so small
that they are barely visible. Other than that, the linear fit seems to describe the data
well which is supported by the statistical fluctuation around 0 of the corresponding
residuals. The constant fit does not seem to be a good model, as less than half of the
datapoints hit the constant line within their error bar. To quantify these observations the
fit parameter results for the two models can be found in Tables 6.7 and 6.8. In addition
to the fit parameters and the reduced χ2, the p-value is introduced as a parameter to
test the goodness of the fit. Given that the null hypothesis (i.e. linear model or constant
model) is true, it states the probability of obtaining a result equal to or more extreme
than the observed result. In other words, the p-value is the probability of a ‘type I
error’ of rejecting a true statistical hypothesis. Usually, models yielding p < 0.05 are
rejected.

Table 6.7: Linear fit parameter results for binned data depending on δt.

δt [min] mδt[ 10−4 %
km s−1 ] bδt[10−3 %] χ2/ndf p

30 -6.9 ± 0.7 1 ± 7 0.33 0.999994

45 -7.4 ± 0.8 2 ± 7 0.16 1 - 7·10−11

60 -7.1 ± 0.7 1 ± 6 0.32 0.999990

75 -7.1 ± 0.8 0.3 ± 6.7 0.24 1 - 3·10−7

90 -5.7 ± 0.7 4 ± 6 0.95 0.564937
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6. Independent analysis of the anticorrelation

Figure 6.17: Correlation of δS∗30 and v∗SW,30 with linear fit (red line) and constant fit (blue
dotted line). Residuals (black dots) are shown for the linear fit.

Table 6.8: Constant fit parameter results for binned data depending on δt.

δt [min] cδt[10−3 %] χ2/ndf p

30 -1 ± 7 2.36 7.18 · 10−7

45 -2 ± 7 1.84 5.07 · 10−4

60 -2 ± 6 3.02 1.82 · 10−10

75 -1 ± 6 2.46 7.85 · 10−7

90 1 ± 6 2.67 5.44 · 10−8
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6. Independent analysis of the anticorrelation

First, the slopes mδt of the linear fit each have about a 10% uncertainty and they agree
with each other within the uncertainty ranges. The reduced χ2 is a bit below 1 due
to the too large uncertainties in δS∗30. The p-values are well above 0.05 so that the
anticorrelation model cannot be rejected. In summary, the linear model describes the
data well.

Second, the constants of the constant fit model have uncertainties of several 100 % and
reduced χ2 values above 2 which shows the instability of the results. The highest p-value
of the constant model corresponds to a significance of ∼ 3.3 of the standard deviations
so that the constant model can be rejected.

Finally, the end result for the slope of the anticorrelation is calculated as weighted mean
of the 5 fit parameter results and their uncertainties. The parameter δt of the analysis is
interpreted as a systematic uncertainty. The standard deviation for the five different slope
values (cf. Table 6.7) is added to the uncertainty of the end result:

mScaler,B
corr = [−6.8± 0.3 (stat.)± 0.7 (syst.)] 10−4%

km·s−1 (6.6)

Although the anticorrelation found via this independent method is smaller than the slope
determined with Scaler dataset A, this result can be well trusted as many systematic
uncertainties have been factored in. In conclusion, the anticorrelation of Scaler data and
Solar Wind velocity data has been verified.
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7. Conclusion and outlook

Due to the effects of the Solar Wind on the propagation of cosmic rays traveling near
our solar system, an anticorrelation between the cosmic ray flux on Earth and the Solar
Wind velocity is expected. In this analysis, low-energy ‘Scaler’ mode data from the
Pierre Auger Observatory is compared to Solar Wind velocity data, provided by NASA
OMNIWeb, to test for this predicted anticorrelation.

Two methods and datasets were used in this study. First, the same analysis that
was used for the published GRAPES-3 study has been performed on a basic Scaler
dataset to directly compare the results of both experiments. In this, periodic effects
like the 27-day solar rotation and the 11-year magnetic cycle have been corrected and
Forbush decreases have been excluded from the data. The GRAPES-3 data yielded a
anticorrelation of mGRAPES

corr = [−13.3± 0.7 (stat.)] · 10−4% s km−1. The result for Scaler
data is mScaler,A

corr = [−9.0± 0.6 (stat.)] · 10−4% s km−1. The values of the slopes do not
agree within error ranges, but a linear anticorrelation is confirmed with comparatively low
uncertainties. However, with the Scaler of the Pierre Auger Observatory data spanning 10
years (4 years more than the GRAPES-3 data), a lower uncertainty should be obtainable.
This motivated the use of a newer Scaler dataset with advanced systematic cuts to check
if a more precise result was possible.

In the independent analysis, the Scaler data was corrected for several effects (e.g. daily
oscillations, seasonal patterns, weather effects and detector instabilities). The ‘perfect’
time-window for averaging Scaler and Solar Wind velocity data could not be determined
and was therefore kept as a parameter. Future studies on that subject could possibly
improve the result through the use of a Fourier analysis to provide a feasible result for
the best averaging time window.

The final result obtained for the slope of the linear model of the anticorrelation is
mScaler,B

corr = [−6.8 ± 0.3 (stat.) ± 0.7 (syst.)] · 10−4% s km−1. The anticorrelation found
via the independent method is smaller than the slope determined with the basic Scaler
dataset. However, this result can be well trusted as several systematic effects have been
factored in. The null hypothesis of no anticorrelation can be rejected with a significance
larger than 3 standard deviations. In conclusion, the anticorrelation of Scaler data and
Solar Wind velocity data has been verified.
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Appendix A.

Appendix

In the following pages the variants of the most important plots will be displayed.
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Appendix A. Appendix

A.1. Determining a time window

(a) δt = 20 min, 2009 (b) δt = 40 min, 2009

(c) δt = 50 min, 2009 (d) δt = 60 min, 2009

(e) δt = 70 min, 2009 (f) δt = 80 min, 2009

(g) δt = 90 min, 2009 (h) δt = 100 min, 2009

(i) δt = 110 min, 2009

Figure A.1: First 5000 min of a random 27 d sample of Solar Wind velocity data from
2009: 1-minute averages (blue dots) and the running mean of varying length
δt (black lines).
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(a) δt = 30 min, 2006 (b) δt = 30 min, 2007

(c) δt = 30 min, 2008 (d) δt = 30 min, 2010

(e) δt = 30 min, 2011 (f) δt = 30 min, 2012

(g) δt = 30 min, 2013 (h) δt = 30 min, 2014

(i) δt = 30 min, 2015

Figure A.2: First 5000 min of random 27 d samples of Solar Wind velocity data from each
year from 2006 to 2015: 1-minute averages (blue dots) and the running mean
of length δt = 30 min (black lines).
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(a) dt = 30 min, 2009 (b) dt = 45 min, 2009

(c) dt = 60 min, 2009 (d) dt = 90 min, 2009

(e) dt = 105 min, 2009 (f) dt = 120 min, 2009

Figure A.3: Dependence of |∆v| (blue dots) and σv,dt (blue triangles) on the length of
δt for a random Solar Wind velocity sample taken from 2009 with varying
length of dt.
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(a) dt = 75 min, 2006 (b) dt = 75 min, 2007

(c) dt = 75 min, 2008 (d) dt = 75 min, 2010

(e) dt = 75 min, 2011 (f) dt = 75 min, 2012

(g) dt = 75 min, 2013 (h) dt = 75 min, 2014

(i) dt = 75 min, 2015

Figure A.4: Dependence of |∆v| (blue dots) and σv,75 (blue triangles) on the length of δt
for random Solar Wind velocity samples taken from each year from 2006 to
2015 with dt = 75 min.
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(a) δt = 20 min, 2011 (b) δt = 40 min, 2011

(c) δt = 50 min, 2011 (d) δt = 60 min, 2011

(e) δt = 70 min, 2011 (f) δt = 80 min, 2011

(g) δt = 90 min, 2011 (h) δt = 100 min, 2011

(i) δt = 110 min, 2011

Figure A.5: First 25000 min of a random 27 d sample of Scaler data from 2011: 5-minute
averages (red dots) and the running mean of varying length δt (black lines).
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(a) δt = 30 min, 2006 (b) δt = 30 min, 2007

(c) δt = 30 min, 2008 (d) δt = 30 min, 2009

(e) δt = 30 min, 2010 (f) δt = 30 min, 2012

(g) δt = 30 min, 2013 (h) δt = 30 min, 2014

(i) δt = 30 min, 2015

Figure A.6: First 25000 min of random 27 d samples of Scaler data from each year from
2006 to 2015: 5-minute averages (red dots) and the running mean of length
δt = 30 min (black lines).
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(a) dt = 30 min, 2011 (b) dt = 45 min, 2011

(c) dt = 60 min, 2011 (d) dt = 90 min, 2011

(e) dt = 105 min, 2011 (f) dt = 120 min, 2011

Figure A.7: Dependence of |∆S| (red dots) and σS,dt (red triangles) on the length of δt
for a random Scaler data sample taken from 2011 with varying length of dt.
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(a) dt = 75 min, 2006 (b) dt = 75 min, 2007

(c) dt = 75 min, 2008 (d) dt = 75 min, 2009

(e) dt = 75 min, 2010 (f) dt = 75 min, 2012

(g) dt = 75 min, 2013 (h) dt = 75 min, 2014

(i) dt = 75 min, 2015

Figure A.8: Dependence of |∆S| (red dots) and σS,75 (red triangles) on the length of δt
for random Solar Wind velocity samples taken from each year from 2006 to
2015 with dt = 75 min.
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A.2. Scaler data treatment

(a) 2006 (b) 2007

(c) 2008 (d) 2009

(e) 2010 (f) 2011

(g) 2012 (h) 2013

(i) 2014

Figure A.9: Scaler data availability (first row, red) and periods removed from the data
due to Forbush decreases (second row, orange), lightning periods (third row,
purple) and ‘bad periods’ (fourth row, dark blue) from 2006 to 2014.
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(a) February (b) March

(c) April (d) May

(e) June (f) August

(g) September (h) October

(i) November (j) December

Figure A.10: Average deviations from the daily mean Scaler rates for a chosen time-
window of 30 min depending on the month of the year.
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A.3. Variance analysis

(a) δt = 45 min (b) δt = 60 min

(c) δt = 75 min (d) δt = 90 min

Figure A.11: Variance distribution depending on time of day for the Solar Wind velocity
data and varying length of δt.

(a) δt = 45 min (b) δt = 60 min

(c) δt = 75 min (d) δt = 90 min

Figure A.12: Variance distribution depending on time of day for the Scaler data and
varying length of δt.
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A.4. Results

(a) δt = 45 min

(b) δt = 60 min

Figure A.13: Variation in Scaler rate (red points in upper pad) and Solar Wind velocity
(blue points in lower graph) including the respective centered moving average
of the data (solid black lines) for a δt of (a) 45 min and (b) 60 min.
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(a) δt = 75 min

(b) δt = 90 min

Figure A.14: Variation in Scaler rate (red points in upper pad) and Solar Wind velocity
(blue points in lower graph) including the respective centered moving average
of the data (solid black lines) for a δt of (a) 75 min and (b) 90 min.
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(a) δt = 45 min

(b) δt = 60 min

Figure A.15: Variation in Scaler rate (red points in upper graph) and Solar Wind velocity
(blue points in lower graph) after subtracting the respective centered moving
average data for a δt of (a) 45 min and (b) 60 min.
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(a) δt = 75 min

(b) δt = 90 min

Figure A.16: Variation in Scaler rate (red points in upper graph) and Solar Wind velocity
(blue points in lower graph) after subtracting the respective centered moving
average data for a δt of (a) 75 min and (b) 90 min.
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(a) δt = 45 min

(b) δt = 60 min

Figure A.17: 2D-histogram of δS∗δt and v∗SW,δt with profile line (black) for each bin in
v∗SW,δt for a δt of (a) 45 min and (b) 60 min.
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(a) δt = 75 min

(b) δt = 90 min

Figure A.18: 2D-histogram of δS∗δt and v∗SW,δt with profile line (black) for each bin in
v∗SW,δt for a δt of (a) 75 min and (b) 90 min.
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(a) δt = 45 min

(b) δt = 60 min

Figure A.19: Correlation of δS∗δt and v∗SW,δt with linear fit (red line) for a δt of (a) 45 min
and (b) 60 min.
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(a) δt = 75 min

(b) δt = 90 min

Figure A.20: Correlation of δS∗δt and v∗SW,δt with linear fit (red line) for a δt of (a) 75 min
and (b) 90 min.
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(a) δt = 45 min

(b) δt = 60 min

Figure A.21: Correlation of δS∗δt and v∗SW,δt with linear fit (red line) and constant fit (blue
dotted line) for a δt of (a) 45 min and (b) 60 min. Residuals (black dots)
are shown for the linear fit.
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(a) δt = 75 min

(b) δt = 90 min

Figure A.22: Correlation of δS∗δt and v∗SW,δt with linear fit (red line) and constant fit (blue
dotted line) for a δt of (a) 75 min and (b) 90 min. Residuals (black dots)
are shown for the linear fit.
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