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Abstract

English

Several simulations of radio wave propagation in multiple-layer dielectric media were performed using
a Parabolic Equation (PE) method. This was applied to a model of the subsurface environment of the
Satunian moon Enceladus, since radar exploration with an ice melting probe is of huge astrobiological
interest due to the possible existence of a subglacial salt water ocean. The dielectric properties of the icy
and aqueous layers were derived from Cassini data by considering salinity of the water, impurity level and
snow depth of the surface ice layer and possible existing sintering processes. In order to find the depth
of a water-bearing crevasse (“water pocket”), a Borehole Ground Penetrating Radar (GPR) method
was tested and a simplistic geometric formula was derived that provides a result that deviates 2.84 %
from the true value. Reflections from the water were analyzed by so-called A-Scans and B-Scans in the
time domain. The simulation can be enhanced by including boundary conditions for irregular and more
complex shaped reflection targets and uneven terrains and by adding very-wide-angle approximations as
the PE models the energy within a cone in a certain angular range.

Deutsch

Es wurden mehrere Simulationen der Ausbreitung von Radiowellen in mehrschichtigen dielektrischen
Medien mit Hilfe einer Parabolic Equation (PE) Methode durchgeführt. Dies wurde auf ein Modell
der unterirdischen Umgebung des Saturnmonds Enceladus angewandt, da die Radaruntersuchung mit
einer Schmelzsonde aufgrund der möglichen Existenz eines subglazialen Salzwasserozeans von großem
astrobiologischen Interesse ist. Die dielektrischen Eigenschaften der eisigen und wässrigen Schichten
wurden aus Cassini-Daten abgeleitet, indem der Salzgehalt des Wassers, der Verunreinigungsgrad und die
Schneehöhe der Oberflächeneisschicht sowie mögliche Sinterungsprozesse berücksichtigt wurden. Um die
Tiefe einer wasserführenden Gletscherspalte zu bestimmen, wurde eine Methode des Borehole Ground-
Penetrating Radar getestet und eine vereinfachte geometrische Formel abgeleitet, die ein Ergebnis liefert,
das um 2,84 % vom wahren Wert abweicht. Die Reflexionen des Wassers wurden durch sogenannte A-
Scans und B-Scans analysiert. Die Simulation kann durch die Einbeziehung von Randbedingungen für
unregelmäßige und komplexer geformte Reflexionsziele und unebenes Terrain sowie durch das Hinzufügen
von Näherungen für große Winkel verbessert werden, da die PE die Energie innerhalb eines Kegels in
einem bestimmten Winkelbereich modelliert.

vi



1
Introduction

The Saturnian moon Enceladus is a prominent candidate for harboring microbial life below the ice sheet
in a global salt-water ocean. From an astrobiological perspective, three criteria must be complied to
host microbial organisms (McKay et al., 2008):

• existence of organic compounds

• liquid water

• (thermal) energy source

All three criteria could be fulfilled on Enceladus. Organic compounds were detected in the plumes by the
Cassini spacecraft’s instruments between 2004 and 2017. The existence of plumes, observations regarding
the recorded temperature at the south pole of the icy moon and calculations of tidal forces suggest, among
other aspects, a global saltwater ocean beneath the surface. Since gases such as hydrogen and methane
were also detected in the plumes, this reveals the presence of hydrothermal vents, which might be an
energy source in the environment of the deep sea floor and, as seen on Earth, transform the water in an
habitat where methanogenic microorganisms are likely to exist (Affholder et al., 2021). The exploration
of the interior of Enceladus in terms of chemical and astrobiological aspects has become a major field of
research. Several projects are already underway that deal with a possible space mission to the moons of
the outer solar system. For a subsurface exploration with a melting probe, there are different approaches
(radar, magnetic field measurements, acoustics). This work will deal with simulations of radio wave
propagation in dielectric media such as ice using a new method, the parabolic equations, and test its
suitability compared to other methods such as Finite-Difference Time-Domain and Ray Tracing. To that
end, the dielectric properties for the different types of ices and the saline water on Enceladus will be
derived and summed up in a simulation geometry. The distance to a water-bearing crevasse is going to
be derived by using simplistic geometry considerations and a radar technique called Borehole GPR.

Figure 1.1: Location of Enceladus in the E-Ring of Saturn between the icy moons Mimas (which
could possess a subglacial ocean as well) and Tethys. Source: NASA/JPL (2005)

1



2
Enceladus

Figure 2.1: Internal structure of Enceladus.
Between an icy crust and a por-
ous rocky core there might exist
a global salty ocean with roughly
10 km thickness at the south pole.
The SPT is tidally heated up (Porco
et al., 2014).

Enceladus, discovered on 28th of August 1789 by William
Herschel, is one of five mid-sized satellites and orbits Sat-
urn between Mimas and Tethys within the E-Ring (cf.
Fig. 1.1) and is located about 10 AU from the sun. It
has a diameter of 504 kilometers. The icy moon has a
bulk density of about (1.609 ± 5) kg m−3 and a rock-to-
ice ratio of roughly 60:40 (Spencer and Nimmo, 2013).
Enceladus has the highest albedo in the Solar System
and can therefore be designated as the brightest satel-
lite. It reflects approximately 80 percent of the sunlight
that it intercepts which is related to the deposition of ice-
rich plume particles and will be discussed later. There-
fore, the reflectance spectrum is dominated by pure water
ice. Besides its high albedo, Enceladus is distinguished by
its youthful and mainly uncratered surface (Spencer and
Nimmo, 2013) including some tectonic rifts and folded
ridges (Porco et al., 2006). This is in contrast to most
moons of its size in the solar system where the surfaces
are covered in impact craters, due to the absence of any
geological processes over billions of years. It has the largest range in crater number density of all Satur-
nian satellites. The region with the lowest crater density is the South Polar Terrain (SPT), which
is situated at ∼ 55° latitude in the southern hemisphere of the celestial body and covers an area of
70.000 km2. The most notable feature is that the region is disrupted by Y-shaped discontinuities, the
so-called Tiger Stripes, which consist of four sub-parallel fissures (named Alexandria, Cairo, Baghdad
and Damascus Sulcus). Moreover, each of these depressions, flanked on each side by low ridges, are about
130 km long, 2 km wide, 500 m deep and 35 km spaced apart. More importantly, they reveal hydro-
thermal activity in the form of Cryovolcanism (see below). Another unique characteristic of the SPT
is the anomalously high temperature (recorded by CIRS) which reaches local peaks up to 157 Kelvins,
especially the ice along the Tiger Stripes, which is significantly warmer than the expected mean surface
temperature of Enceladus of 68 Kelvins, if only heat coming from sunlight is considered (Konstantinidis
et al., 2015). The elevated heat flux output gives scientifically strong evidence for one or more present
heat sources in the interior of Enceladus. According to current research, this is most probably due to
tidal heating (Dougherty et al., 2009) which could drive the geological activity (Efroimsky, 2018) and
keep a most likely existing subsurface ocean warm for billions of years (Choblet et al., 2017).

2



2.1 Structure

2.1 Structure

Enceladus is a differentiated body, which means that it develops compositionally distinct layers due to
their geochemical behavior. According to planetary differentiation mechanisms, the layers of different
elements then stratify from heavy to light from the inside out: the differentiation of the rock-mass
from the (water-) ice-mass demonstrate this, creating a core and a mantle. The reason why the layers
were heated and differentiated is because of the abundance of short-lived radionuclides (Castillo et al.,
2005) like Al-26 and Fe-60, which generated a lot of heat through radioactive decay. Enceladus, which
formed quickly after the formation of the Saturnian subnebula, was rich with these radionuclides (Castillo
et al., 2006) as compared to longer-lived radionuclides, and therefore prevented the rapid freezing of the
interior and raising the core’s temperature up to 1300 K. By means of this heat, both, the core and
the ice, partly began to melt and formed magma chambers, accompanied by differentiation of the core.
Tidal dissipation from resonance with neighbor satellite Dione and from libration maintained over a
long time-scale (Murray and Dermott, 1999) occur in these magma reservoirs, as well as in the ice layer.
These friction processes maintain these hot spots stable and drive geological activity, perhaps provided
by hydrothermal circulation at the interface between the core and the ice (Matson et al., 2006). Regions
beyond the asteroid belt are rich in H2O (more precisely: in hydrogen and oxygen). Additionally, Saturn
is located beyond the snow line where the environment is cold enough for volatile compounds such as
water to condense into solid ice grains. Both of the aforementioned statements explain the occurrence of
the thick water ice shell of Enceladus. The most common model of the interior of Enceladus is described
as follows, starting from the inside out: the core consists of silicate minerals and is likely irregular shaped,
cold, rigid and porous. The radius can derived from bulk density calculations and is estimated at 150-170
km (Spencer and Nimmo, 2013). The core is expected to possess water as a consequence of its porosity.
During Cassini’s third encounter, approaching Enceladus up to 168 km on 14th of July 2005, scientists
observed plumes consisting of H2O vapor and salt-bearing ice grains emanated via cryovolcanism from
warm fractures at the Tiger Stripes, implying a subsurface liquid salt-water reservoir or even a global
ocean below the homogeneous brittle ice crust (Porco et al., 2006). Libration measurements show that
the ice crust is fully detached from the rocky core through the water ocean. This ocean has probably a
depth of 10 kilometers at the South Pole and lies beneath a water-ice crust (NASA, 2018), whereby the
thickness of the crust is less at the poles (5-10 km) than at the equator (30-40 km). In vicinity of the
geysers, the terrain is tectonically younger. With increasing distance to them the surface is older and
more densely cratered.

2.2 Cryovolcanism and Surface Composition

The Tiger Stripes were first observed on 20th of May 2005 by the ISS camera of Cassini’s spacecraft. Over
207 active cryovolcanoes/geysers, that are associated with these four parallel fractures along the SPT,
have been identified on Enceladus, including six hotspots (Spitale and Porco, 2007) and 115 weaker
sources that were elaborated and proposed by Spitale et al. (2015) and Southworth et al. (2019) by
analysing Cassini images with triangulation among other things. The Tiger Stripes appear in a bluish
color (cf. Fig. 2.2b) on a false-color image because the ridges in their vicinity are mainly covered with

3



2 Enceladus

coarse-grained crystalline water ice which absorbs the near-infrared light used to create the red-channel
(Spencer and Nimmo, 2013). On the other hand, nearly the entire surface of Enceladus is coated in a
layer of fine-grained pure water ice that in some places reflects 99 percent of the sunlight, renewing the
outermost layer again and again before interstellar dust and micrometeorites contaminate the ice. The
same applies to impacts of larger meteorites, to which all planets, including Enceladus, are exposed over
time, which create larger craters before the depressions are then levelled again by the global renewal of
the surface. Globally, the typical water-ice grain size is 50 to 150 µm, but grain sizes increase to 100
to 300 µm in the tiger stripes region (Brown et al., 2006). However, the data situation is not clear:
while Degruyter and Manga (2011), Scipioni et al. (2017), Jaumann et al. (2008) assume an average
particle size of 75 µm in the Tiger Stripe region, Southworth et al. (2019) uses particle sizes of 0.5-15 µm
in order to simulate the snow accumulation rate. In vicinity of the Tiger Stripes, these deposits could
also subject to sintering due to the higher heat flux. Further explanations for the varying particle sizes
and sintering processes on icy moons will be given below. Additionally, VIMS also detected traces of
free carbon dioxide ice, trapped CO2 and simple organics (Brown et al., 2006). The geyser-like eruptive
activity is in form of many narrow discrete jets (i.e. individual, collimated sources that emerge from
the fractures) of micron-sized water ice particles emanating from the SPT, feeding a large plume (i.e.
the entire south polar emission composed of all jets and diffuse sources along fractures) and supplying
Saturn’s E-ring (Postberg et al., 2018). According to recent knowledge the material sputtered out is
not only in form of discrete jets but to a large extent more in form of broad, curtain-like eruptions
(Spitale et al., 2015). Based on models of geyser particle deposition on the surface the depth of the
unconsolidated snow particles and the sintering level can be estimated (Southworth et al., 2019). The
snow depth turns out to be of order 100 m thick (Friend and Kyriacou, 2021).

(a) Polar stereographic basemap of Enceladus’ SPT
showing the four Tiger Stripes Damascus, Baghdad,
Cairo and Alexandria Sulcus. The numbers indic-
ate the ID numbers of all 100 jets and the colored
circles are 2σ uncertainties of their location (Porco
et al., 2014).

(b) The SPT on a false-color ISS image showing the Tiger
Stripes in a bluish color. The region in vicinity of the frac-
tures is mainly coated with coarse-grained crystalline wa-
ter ice (while at greater distance the surface is coated with
fine-grained water ice) which absorbs the near-infrared
light used to create the red channel (Sokol, 2017).

Figure 2.2: Enceladus’ SPT (a) and false-color image of the SPT (b).
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2.2 Cryovolcanism and Surface Composition

Enceladus’ South Polar Plumes

Figure 2.3: Tidal dissipative heating (TDH)
in the core (yellow stars) and
water circulation in the core
and in the ocean (red arrows).
The plumes are shaped by buoy-
ancy and Coriolis forces (black
spirals). The Cassini space-
craft is represented in one of
its fly-bys of Enceladus, during
which it crossed the gas plume
of oceanic material escaping into
space (dotted trajectory) (Aff-
holder et al., 2021).

Generally, a plume on Enceladus is composed with three dif-
ferent phases: Gas, solids (dust) and ions, whereby neutral
gas is most abundant and all three phases consisting mainly
of water. The gas phase shows a horizontal variation of
neutral gas density. This means the plume consists of su-
personic collimated high velocity components (“jets”) and
much slower outgassing components throughout the whole
south polar fractures. More precisely, this means emissions
of heavier molecules (with masses >200 u) show a smaller
lateral spread than lighter molecules (e.g. H2, H2O), i.e. the
spatial composition of high-velocity molecules is mass de-
pendent. If the jet is assumed as a supersonic cone, then
the cone angle, equivalent with the terminus of “spreading”,
is wider for lower-mass molecules emitted at the same ve-
locity and in thermal equilibrium (Postberg et al., 2018).
The ejection speed of water vapor (≈ 700 m/s), which is
much greater than the Enceladean escape velocity, is also
much higher than that of dust grains, thus, the gas escapes
completely into space. The ionic component of the plume in-
teracts with Saturn’s magnetosphere and therefore escapes
the gravitation of Enceladus as well. However, from the
solid material with grain sizes larger than 0.1 µm, only a
small fraction falls back and sediments to the surface, while
a greater part escapes to feed the E-Ring. This is because the escape probability is coupled with grain
size. Therefore, the deposition rates vary with the surface location, resulting in a vertical stratification
in particle size: the largest particles were found in vicinity of the geyser fractures while smaller particles
have been found further away. Note, that larger particles have lower speeds and therefore reach lower
travel heights and distances away from the plume whereas smaller particles have higher speeds and land
further away in a greater distance to the geysers, and therefore are more likely to sediment most of
Enceladus’ surface. The smallest particles have the highest speeds and escape into space to feed the
E-Ring. The larger near-surface particles are generally more enriched in salts and are possibly frozen
droplets of salty liquid water, while smaller particles are more poor in salts and therefore consist mostly
pure water-ice that generated by the condensation of relatively salt-free plume vapor. However, there
still exist an uncertainty for both, the origin of those molecules sprayed out of the cryovolcanoes and the
mechanism of the geyser-like activity.
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2 Enceladus

Chemical Composition of Enceladus’ Plumes

Figure 2.4: Mass spectrum of the Enceladus plume
from the October 9th 2008 flyby. The
colors show contributions from various
species (Waite Jr et al., 2009)

The majority of the ice grains are crystalline and not
amorphous which implies a formation at temperatures
above 130 Kelvins and emphasizes the temperature an-
omaly. The determination of the chemical, elemental
and isotopic composition of the gaseous and volatile
components of the neutral particles and the low energy
ions in Saturn’s magnetosphere and in the ring en-
vironment could have been analyzed by INMS. Direct
measurements of particles of any kind encountering the
spacecraft could have been taken by CDA, while with
VIMS spectra constraining particle size and composi-
tion and including surface deposits around the plume
sources could have been generated. In advance, the
lack of sensitivity of the Cassini instruments for heav-
ier and more complex molecules must be considered (Postberg et al., 2018). Besides 98 % of water
(H2O), the most frequently occurring constituents and volatiles in the vapor are represented by a mix-
ture of ammonia (NH3, 0.4-1.3 %), molecular hydrogen (H2, 0.4-1.4 %), carbon dioxide (CO2, 0.3-0.8 %)
and organics, whereas the most abundant organics in the gas component is methane (CH4, 0.1-0.3 %)
(Waite et al., 2017) apart from C2, Ar, C3 and C4. There might as well be O- and N-bearing organics
in both, neutral gas and ice grains. Directly measured molecules in ionized form are represented mainly
by water and water products, i.e. cations in form of HnO+ (n=0-3), anions in the form of OH−, H− or
O− and water clusters in form of (H2O)nOH− (n=1-3). The abundance of high-mass anions (m>200
u) consistent with complex organics, N-bearing cations (e.g. NH+) and cations with masses of 28 u
(maybe N+

2 and/or CO+, cf. Fig. 2.4) is not yet conclusively clarified but are in well agreement with
an ample scientific evidence of measurements in Saturn’s magnetosphere. About 99 % of the mass in
the solid components of the jets is salt-rich (Porco et al., 2014). The plume particles are geochemically
similar to the components of comets (Battersby, 2008), which basically incorporate a conglomerate of
rock, dust, water ice and light organics, but differ in their proportions. The most abundant neutral,
non-icy compounds in the solid phase for plume particles with radii greater than 0.2 µm are sodium salts
and organics. The sodium-salts-bearing particles, mainly consisting of water ice and sodium chloride
(NaCl) (0.05-2 mol kg−1) and sodium hydrogen carbonate (NaHCO3, 2-5 times less than NaCl), can be
subdivided into three types (cf. Tab. 2.1):

Table 2.1: Three types of ice grains that were detected and identified differently often, which differ in
weight, size and chemical composition (Postberg et al., 2009)

Type I Type II Type III
Weight/Size light/small light/larger than Type I heavy/large
Composition Pure Water Ice similar to Type I + organics Traces of N + K salts

Na
H2O 10−8 − 10−5 similar to Type I > 10−3, molality 0.5-2%
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2.3 EnEx - Enceladus Explorer

2.3 EnEx - Enceladus Explorer

Figure 2.5: Logo of the
EnEx-initiative.
Source: DLR

Enceladus, which is within reach for mankind, could harbor extraterrestrial
life. In order to explain the origin of the organic compounds detected by
Cassini, it would be useful to examine the water directly in the interior
while it is still liquid. Traces of microbial life that might have developed in
a possible salt-water ocean would burst and likely not survive the (freezing)
process while rising through the ice fissures due to pressure, especially not
when ejected from the geysers and exposed to the hostile conditions on
the Enceladean surface. From 2012 to 2015, the Space Administration of
the German Aerospace Center (DLR-Raumfahrtmanagement) conducted
the Enceladus Explorer (EnEx) project. Within this project, in total of 8
distinct institutes and universities worked as partners on the development of key technologies for the
exploration of Enceladus and possibly other icy moons in the outer solar system, one of which was to
develop a robotized ice melting probe (Konstantinidis et al., 2015). One of the most the challenging

Figure 2.6: A lander with an ice melting probe onboard that lands near a geyser-active fracture. The
probe melts and drills through the ice until it reaches the inner wall of an up-going channel,
takes samples of the liquid plume material and do microbiological analysis (Eliseev, 2018).

aspects is the navigability and especially the autonomy of the probe that has to be realized, since the
signal transit time from Earth to Enceladus is about two hours, depending on the positions of Earth
and Saturn. The EnEx melting probe will basically be based on the concept of the IceMole, which
was developed by the FH Aachen and whose functionality has successfully be proven in a field test in
Antarctica, where researchers extracted an uncontaminated water-sample from the Blood Falls in 2015.
After the completion of the Verbundvorhaben, the EnEx-initiative was launched, whereby the DLR
coordinates a couple of parallel running, individual sub-projects that are strongly linked to each other.
Each of them focuses on a specific technology aspect with the main goal to develop systems for the
navigation of a maneuverable subsurface ice melting probe for clean sampling and in-situ analysis of ice
and subglacial liquids. They use different approaches for the navigation like radar, acoustics or magnet
field measurements.
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2 Enceladus

Mission to Enceladus and Requirements for the Melting Probe

A possible mission to Enceladus could look like this: after launch, a lander and an orbiter perform the
interplanetary transfer together carrying the melting probe. Once arrived close enough to Enceladus,
the orbiter would decouple from the lander, which then in turn would land at a safe distance away of an
active plume. The orbiter would be used for the purpose of communication between lander and Earth.
The melting probe would then melt and drill through the ice and navigate towards a subglacial aquiferous
fracture autonomously while circumnavigating hazards and obstacles. After taking samples at a depth
of 100-200 meters, the probe, which is directly connected to the base station via cable for power supply,
would send this information to the surface. Summing up the abovementioned, the following requirements
and enhancements can be placed on the melt probe (Konstantinidis et al., 2015): It should

• possess a melting, drilling and propulsion mechanism so that the probe can steer in any direction,

• be able to locate a liquid water-bearing crevasse over a distance of >100 m,

• be autonomous and self-learning: It should be able to plan and follow an optimal path from the
surface to the calculated destination completely independently,

• sense and avoid obstacles in the ice like cavities and rocks which could hinder further movement,

• continuously determine its actual position in the ice relative to the surface station and to the
target. It should also take into account range and energy expenditure,

• sample liquid water, do in-situ analysis in terms of testing the water on biosignatures and send the
data to the surface station.

However, the work on the mission concept is still in progress and design features are not final but could
change until a final version of the concept is defined.

EnEx-AsGAr

One of the sub-projects within EnEx focuses on radar-based mapping of the ice, especially developing
an imaging system for crevasses for robotic ice exploration to ensure a suitable landing site. It is called
EnEx-AsGAr and is a collaboration of University of Wuppertal (BUW), Friedrich-Alexander University
Erlangen-Nuremberg (FAU) with the support from the DLR-HR in Oberpfaffenhofen. The aim is to
generate high resolution and spatially accurate images of the subsurface ice environment in front of the
melting probe during and after landing for which the ice parameters (see below) are needed. Accordingly,
the radar-based exploration on Enceladus is divided into three phases (cf. Fig. 2.7) and would look like
the following:
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2.3 EnEx - Enceladus Explorer

• Phase 1: Remote Sensing. Coarse resolution detection and mapping of the surface and subglacial
structure of geyser cracks from the orbit to determine an appropriate landing position and gauging
the ice depth.

• Phase 2: Descent. Improved structure resolution and imaging of deeper structures during descent
of the lander to the surface in order to locate for example a water-bearing crevasse.

• Phase 3: Near-field imaging. Fine resolution recording of the subsurface ice. The EnEx melting
probe melts and penetrates through the ice, navigates towards its target and takes in-situ meas-
urements while the radar supports its localization by SAR principle. Identification of obstacles like
meteoric rocks.

Figure 2.7: Three Phases of the radar-based imaging on Enceladus.
Phase 1 and 2 is for the purpose of long-range imaging
in order to determine a suitable landing spot while in
Phase 3 the short-range imaging would give more details
of the subsurface in terms of obstacles and the water
pocket(s). Credit: Dr. Pia Friend

Commonly used techniques of radar
systems can not be applied for the mis-
sion since the EnEx-lander is limited in
mobility and a line-by-line scanning of
the ice region with highly directional
radar arrays are not possible. Hence,
a novel imaging concept has been de-
veloped which is principally based on
synthetic aperture radar (SAR), whose
kernel is expanded with Fermat’s prin-
ciple of least time. This has already
been exercised in remote sensing tests
where glaciers land areas of several kilo-
meters have been captured by an air-
craft’s overflight with help of SAR tech-
nique. SAR can be applied by making

the assumption of a ground that appears flat from great height or when using the perpendicular radar
system with strong directivity. In this case (Phase 1), the refractions of the electromagnetic waves at
the ice-vacuum boundary layer, occurring because of the different dielectric constants of vacuum and
ice, can be neglected. This is different during and after landing. The surface becomes uneven and the
examination area small, so that refraction and reflection effects on the ice surface and in the subsurface
ice have to be considered that have to be compensated by the radar system with help of an improved
imaging algorithm of SAR. By means of this reflection at the boundary layer a 3D map of the surface
structure of Enceladus can be generated. These radar mapping techniques require the knowledge of the
permittivity εr, since propagation speed through the ice and refraction angle at the surface boundary
(scattering) and energy absorption (attenuation) are dependent on it. The permittivity is determined by
parameters such as salinity, density (porosity) and temperature of the ice, which are not entirely known
for Enceladus’ ice crust. Radar localization is based on the fact that the radar velocity is well-known
in air or vacuum. Both, the propagation speed and the time-of-flight (TOF) of incident waves, allow to
calculate the distance to obstacles like meteoric rocks and water-bearing crevasses.
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3
Radioglaciology - Radio Wave Propagation through Ice

In this chapter, properties of dielectric material will be discussed. It will focus specifically on radio wave
propagation in ice. The following conventions will be used:

~∇ · ~E ≡ div ~E − divergence of ~E ~̇E ≡ ∂E

∂t
− time derivation of ~E

~∇× ~E ≡ rot ~E − rotation of ~E ~∇ · ~∇ = ∆− Laplace operator

~E is the electric field vector, ρ is the charge density, ~B is the magnetic field vector, ~j is the current
density vector, ε0 = 8.85 · 10−12 A · S ·V−1 ·m−1 is the permittivity or dielectric constant in free space
and µ0 = 4π · 10−7 N ·A−2 is the magnetic permeability of free space.

3.1 Electrodynamics in Vacuum

The core of Electrodynamics is formed by the microscopic Maxwell’s Equations. They are fundament-
ally important for describing the dynamics of the propagation of electromagnetic waves in vacuum.

Maxwell’s Equations (microscopic)

~∇ · ~E = ρ

ε0
~∇× ~E = − ~̇B (3.1)

~∇ · ~B = 0 ~∇× ~B = µ0~j + µ0ε0 ~̇E (3.2)

Let the charge- and current density vanish so that the electric and magnetic fields are free of sources.
Then, Ampères circutial law with Maxwell’s addition (Eq. 3.2) can be written as:

~̇E = 1
µ0ε0

~∇× ~B (3.3)
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3.2 Electrodynamics in Dielectrics

Now take the derivation of Equation 3.3 and insert the result in Maxwell-Faraday equation (Eq. 3.1).
Finally, it is:

~̈E = 1
µ0ε0

~∇× ~̇B

= − 1
µ0ε0

~∇× (∇× ~E)

= − 1
µ0ε0

(~∇(~∇ · ~E − (~∇ · ~∇) ~E)

= 1
µ0ε0

∆ ~E

where the vector triple product identity ~∇ × (~∇ × ~E) = ~∇(~∇ · ~E) − (~∇ · ~∇) ~E is used and the electric
field is assumed to be free of divergence: ~∇ · ~E = 0. Let us write this equation in a more explicit form:

(µ0ε0∂t∂t − ∂i∂i) ~E = 0⇔ 2 ~E = 0 (3.4)

where 2 is the d’Alembert operator. This equation is called Wave equation. The negative sign
transforms the elliptic Laplace Equation in a new hyperbolic equation which allows different solutions.
The ansatz

~E(z, t) = ~E(z ± ct) (3.5)

is a solution of 3.4 if the constant is set to c = 1√
µ0ε0

. The electric field remains unchanged in his form
but propagates at a velocity of

c = 1
√
µ0ε0

' 2.998 · 108 m
s (3.6)

which is identified as velocity of light in free space (vacuum) (Hoelbling, 2020, pp. 73-75). An explicit
form of the solution for the wave equation can be ~E(z, t) = E0,z · e−ikz. Hence, the time-harmonic wave
is a solution to the wave equation derived from Maxwell’s equation since k = ω

c , where ω = 2πf is
the circular frequency and controls the time evolution of the wave, while k = 2π

λ controls the spatial
evolution. Consequently, it is

k0 = 2πf
c

= 2πf√ε0µ0 (3.7)

3.2 Electrodynamics in Dielectrics

So far, electrostatic potentials and fields in the presence of charges and conductors were discussed where
there was no difference between microscopic and macroscopic fields. Thus, in vacuum or air it was
allowed to neglect their dielectric properties because they are sufficiently thin as a medium. This is
not the case for denser media, where responses to external electric fields have to be considered. It is
impossible to describe microscopic electric fields and charge distribution in a dielectric since on average
about 1023 (sub-)atomic and molecular particles per cubic centimeter are in motion, resulting in spatially
and temporarily rapidly oscillating fields. Therefore, it is consulted only the field strength averaged over
many molecule diameters, i.e. over macroscopic little but microscopic large areas containing a multitude
of atoms/molecules. After averaging, the equation ~∇ · ~Emicro = 0 maintains its homogeneous shape:
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3 Radioglaciology - Radio Wave Propagation through Ice

~∇ · ~E = 0, where ~E represents the averaged, macroscopic electric field which is still derivable from a
potential. Matter mainly consists of charged particles (protons, electrons, ions,...) which are not always
free to move but respond to external fields, which throw them off the equilibrium (Nolting, 2013). If these
electric charges are understood as neutral units, such as molecules or a constituents of a crystal lattice,
they will not have a total charge but a multipole moment. When a field is applied, the bonded charges
in each molecule react to this perturbation and make additional movements, meaning that the molecular
charge density gets distorted, respectively, the multipole moment of each molecule changes its value.
This multipole moment can be induced by a permanent asymmetric electron cloud, where the positive
and negative charges shift relative to each other (displacement polarization) or by an external electric
field, where permanent dipoles align (orientation polarization). The induced additional electric field
superimposes respectively counteracts the external field and weakens it inside. This property is called
dielectricity and materials that possess this property are called dielectrics (Hoelbling, 2020). In absence
of an external electric field, the multipole moments vanish in the most substances after averaging. In
presence of an external electric field the dipole term is the most dominant term in the multipole expansion.
This leads to an electric Polarization P:

~P (~x) =
∑
i

Ni · 〈~pi〉 (3.8)

where pi is the dipole moment of the i-th molecule and Ni is the average number of molecules of the i-th
type per volume unit around ~x, whereas the averaging is performed around a little volume around ~x. If
the molecules have a total charge ei and an excess of free charges the charge density can be written as:

ρ(~x) =
∑
i

Ni〈ei〉+ ρfree = ρbound + ρfree ≡ ρb + ρf (3.9)

Generally, the average molecular charge is equal to zero, hence, the charge density is represented solely
by free charges. On macroscopic observation of the medium, the charge density changes to ρ 7→ ρf−ρP =
ρf − ~∇~P (effective charge density). The new Maxwell’s equation is therefore given by:

~∇ · ~E = 1
ε0

[
ρ− ~∇~P

]
(3.10)

Let ~D = ε ~E+ ~P be the electric displacement field, then the counterparts to Maxwell’s Equations in free
space (Eq. 3.1) is given by:

~∇ · ~D = ρ ~∇× ~E = − ~̇B (3.11)

In order to determine a relation between the fields ~D and ~E, the following assumption must be made:
the system responds linearly to the external field and the medium is isotropic. Then, the polarization
~P is parallel to ~E:

~P = ε0χe ~E (3.12)

where χe is the electric susceptibility and is independent of direction. In this case, the displacement field
is proportional to the electric field:

~D = ε ~E (3.13)
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3.2 Electrodynamics in Dielectrics

with ε = ε0(1 + χe). For homogeneous media, ε is location-independent and the left side of Equation
3.11 can be written as:

~∇ · ~E = ρ

ε
(3.14)

which means that a macroscopic problem can be reduced to a microscopic problem if the electric field is
reduced by the factor of ε

ε0
because of the counteracting inner electric fields. For inhomogeneous material,

ε and µ depend on location and perhaps time and for anisotropic materials (e.g. crystal structures) these
scalars become tensors (εik, µik, χik). Analogous considerations can also be made for magnetostatics.
The current density as a function of location was well-known so far. Since a multitude of electrons
move in the atoms of matter, this is not the case anymore, as a consequence of effective atomic currents,
whose density fluctuates. Besides, atoms possess inner magnetic moments which generate dipole fields
that vary over a significant atomic area. Like already shown, the averaging over such an area brings
us to the macroscopic equations. Again, the divergence of ~B is equal to zero before as well as after
the averaging (~∇ · ~Bmicro = 0 and ~∇ · ~B = 0) so that a vector potential provides the magnetic field. If
the average (macroscopic) magnetization is set to ~M(~x) =

∑
iNi〈~mi〉 with ~mi the average molecular

magnetic moment of the i-th molecule per volume unit around ~x, then an additional term to the current
density is included in the form of ~j 7→ ~jf +~jM (jf is the macroscopic current density caused by movement
of free charges and ~jM = ~∇× ~M). Analogous to above, the current density in Maxwell’s equation in free
space (Eq. 3.2) is replaced by the new effective current density and it is:

~∇× ~B = µ0
[
~jf + ~∇× ~M

]
(3.15)

Let ~H = 1
µ0

[
~B − ~M

]
the magnetic field. The counterpart to the magnetic Maxwell’s equations is now

given by:

~∇× ~H = ~jf ~∇ · ~B = 0 (3.16)

For isotropic substances it can be established the following relation between the two fields:

~B = µ · ~H (3.17)

whereby µ is the magnetic permeability. The new system of equations is not consistent. For Ampères
circutial law 3.16 it was made the assumption of a stationary system, i.e. ~∇·~j = 0 but has to be replaced
with a continuity equation for time dependent fields: ~∇~j+ ρ̇ = 0. Add the displacement current and get
~j 7→ ~jf + ~̇D. The final and correct Maxwell’s equations in a dielectric medium are given by:

Maxwell’s Equations (macroscopic)

~∇ · ~D = ρf ~∇× ~E = −µ ~̇H (3.18)

~∇ · ~B = 0 ~∇× ~H = ~jf + ~̇D (3.19)
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3 Radioglaciology - Radio Wave Propagation through Ice

whereby Ampères circutial law 3.19 can be also written as ~∇ × ~H = σ ~E + ε ~̇E where ~j = σ ~E and σ is
the conductivity. The essential point here is that a varying electric field generates a magnetic field even
when no current is flowing, which was important to understand the physics of light and electromagnetic
waves. In accordance to Equation 3.7, for a wave travelling through any material other than a vacuum,
and taking into consideration that the phase velocity can be defined as vφ = ω

k , it is:

k = 2πf
vφ

= 2πf√εµ (3.20)

Hence, in accordance with the velocity in vacuum (Eq. 3.6) the phase velocity is now given by

vφ = 1
√
µε

= 1
√
ε0εrµ0µr

(3.21)

where

• µ0 = 1.26 · 10−6 H/m - absolute magnetic permeability

• ε0 = 8.85 · 10−12 F/m - absolute electric permittivity of free space

• µ = µ0µr - absolute magnetic permeability of medium

• ε = ε0εr - absolute electric permittivity of medium

• εr - relative permittivity (≈ 1-80 for most geologic materials)

• µr = relative magnetic permeability (1 for nonmagnetic geologic materials)

Another important quantity is the refractive index, which describes how fast light travels through the
material and is defined as

n = c

v
= √µrεr (3.22)

respectively, if µr ≈ 1, so that magnetic interactions are neglected, then

n ≈
√
εr (3.23)

Hence the phase velocity of a wave propagating in a dielectric medium is:

vr = c
√
εr

(3.24)

The electromagnetic waves consist of an electric and a magnetic component. In a perfect dielectric the
magnetic susceptibility and the electric permittivity are constants, which means that they are independ-
ent from frequency and the medium is not dispersive. Additionally, there are no attenuation losses. This
is not so for real dielectrics. However, in material of interest of surface-penetrating radar the magnetic
losses are negligible (i.e. it is not a complex quantity) whereas the electric losses has to be considered,
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3.2 Electrodynamics in Dielectrics

which means the permittivity ε and conductivity σ are complex quantities:

ε = ε′ − iε′′ (3.25a)

σ = σ′ − iσ′′ (3.25b)

The real part ε′ is linked to the electric permittivity while the imaginary part ε′′ is associated with losses
in conductivity and frequency due to absorption. Therefore, Equation 3.23 can be rewritten as:

n ≈
√
ε′ + iε′′ (3.26)

For oscillating electrical fields that induce a frequency dependence of the polarization it is required
to change the dielectric constant to the (complex) dielectric function that now contains all necessary
information:

εr(ω) = ε′(ω) + iε′′(ω) (3.27)

Consequently, it makes sense to do so for the refractive index as well. Instead of using n′ and n′′ for the
real and imaginary part, which is historically justified, n and the extinction coefficient κ will be used:

n∗(ω) = n(ω) + iκ(ω) (3.28)

Using the relation given in Equation 3.23 this yields to:

(n+ iκ)2 = ε′ − iε′′ (3.29)

Bringing the real and imaginary parts of the complex permittivity and the complex refractive index
together, one can write them in dependence of each other:

n2 = 1
2

((
ε′ 2 + ε′′ 2

) 1
2 + ε′

)
κ2 = 1

2

((
ε′ 2 + ε′′ 2

) 1
2 − ε′

)
(3.30)

and

ε′ = n2 − κ2 ε′′ = 2nκ (3.31)

The electric loss tangent is defined as

tan δe = ε′′

ε′
(3.32)

and the loss tangent fulfils the equation

tan δ = ωε′′ + σ

ωε′ − σ′′
(3.33)

The new wave equations induced by the macroscopic Maxwell’s equations are given by:

∆ ~E = µσ ~̇E + µε ~̈E (3.34)

∆ ~H = µσ ~̇H + µε ~̈H (3.35)
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3 Radioglaciology - Radio Wave Propagation through Ice

For sinusodial time-varying fields (time-harmonic fields), Equations 3.34 and 3.35 can be written as

∆ ~E = γ2 ~E (3.36)

∆ ~H = γ2 ~H (3.37)

and is called Helmholtz Wave Equation where the complex number

γ =
√
iωµ(σ + iωε) = α+ iβ (3.38)

is called propagation constant and includes the attenuation constant α, which is related to the decrease of
the amplitude and the phase constant β that characterizes the propagation of the wave. Both quantities
can be expressed in terms of the permeability, the conductivity and the permittivity:

α(ω) = ω

√√√√√µε

2

[√√√√1 +
(
σ

ωε

)2
− 1

]
β(ω) = ω

√√√√√µε

2

[√√√√1 +
(
σ

ωε

)2
+ 1

]
(3.39)

The phase constant β can be used in order to determine the phase velocity analogous to k:

vφ = ω

β
= 1√

µε
2

[√
1 +

(
σ
ωε

)2 + 1
] (3.40)

From here, two limit value observations can be performed: insulators (σ → 0) and conductors (σ →∞):

lim
σ→0

α(ω) = σ

2

√
µ

ε
→ 0 (3.41)

lim
σ→0

β(ω) = ω
√
µε = ω

vφ
= k (3.42)

lim
σ→0

vφ(ω) = 1
√
µε

(3.43)

since limσ→0
√

1 + ( σωε)2 = 1. These general forms reduce exactly to the originally derived equations for
free space. There is no dissipation (α = 0) and β reduces to the wave number k.

lim
σ→∞

α(ω) =
√
ωµσ

2 →∞ (3.44)

lim
σ→∞

β(ω) =
√
ωµσ

2 →∞ (3.45)

lim
σ→∞

vφ(ω) = 2ω
µσ
→ 0 (3.46)

The general form of the solution to Equation 3.36 for a wave polarized in the y-direction and originating
at z = 0, t = 0 is:

E(z, t) = E0,z · e−γz = E0,z · e−(α+iβ)z = E0,z · e−αz · e−iβz = E0,z · e−αz︸ ︷︷ ︸
attenuation term

· ei(βz−ωt)︸ ︷︷ ︸
propagation term

(3.47)
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3.2 Electrodynamics in Dielectrics

The propagation of a plane electromagnetic wave in positive z-direction can also be described by

E(z, t) = <
[
E0,z · e−i(kz−ωt)

]
(3.48)

where kz, as introduced before, is the component of the wave vector in z-direction. It describes the
change in phase per unit length for each wave component. and fils the role of β in Equation 3.47.
In order to put the electric field in dependence of the refractive index, the known expression for the
propagation velocity can be used. It is v = c

n∗ and k = 2π
λ = ω·n∗

c . Insertion yields

E(z, t) = <
[
E0,z · exp

{
i ·
(
ω · n∗

c
· z − ω · t

)}]
= <

[
E0,z · exp

{
i ·
(
ω · (n+ i · k)

c
· z − ωt

)}]
= <

[
E0,z · exp

{(
i · ω · n

c
− ω · κ · z

c
− i · ω · t

)}]
E(z, t) = E0,z · exp

{
−ω · κ · z

c

}
︸ ︷︷ ︸

Decreasing amplitude

· <
[
exp

{
i · (kz · z − ω · t)

}]
︸ ︷︷ ︸

Plane wave

in compliance with Equation 3.47. In concrete terms this means with use of a complex refractive index
the propagation of electromagnetic waves in a material is whatever it would be for an ideal material with
only a real index of refraction times an attenuation factor that decreases the amplitude exponentially
as a function of depth z. If z = c

ω · κ := W , the intensity decreases by a factor of 1
e and is known as

absorption length or penetration depth. The imaginary part, on the other hand, is known as damping
constant, attenuation index, extinction coefficient or (rather misleading) absorption constant. If η = E

H is
defined as the intrinsic impedance, then it is possible to describe received signals that scattered in multi-
layer dielectrics at corresponding boundaries. At these boundaries, some energy is reflected and some is
transmitted. This can be described by the reflection (r) and transmission (t = 1 − r) coefficients. If a
continuous transition of two dielectric media 1 and 2 with impedances η1,2 and with relative permittivities
εr1,2 is assumed, then (Daniels, 1996, pp. 34-42):

r = η2 − η1
η2 + η1

=
√
εr2 −

√
εr1√

εr2 +√εr1
t = 2η1

η2 + η1
=

2√εr1√
εr2 +√εr1

(3.49)

The transmission and reflection of light of a wave incident on an interface between to different optical
media at an arbitrary angle can be described by the Fresnel equations:

r =
∣∣∣∣n∗2 cosα− n∗1 cosβ
n∗2 cosα+ n∗1 cosβ

∣∣∣∣2 t =
∣∣∣∣ 2n∗1 cosα
n∗2 cosα+ n∗1 cosβ

∣∣∣∣2 (3.50)

In case for a nonconducting medium and when considering only a single frequency of radiation and an
incident angle of 0◦, where there is no distinction between the types of polarization, the formulas can be
changed to:

r = (n2 − n1)2 + (κ2 − κ1)2

(n2 + n1)2 + (κ2 + κ1)2 t = 1 + (n2 − n1)2 + (κ2 − κ1)2

(n2 + n1)2 + (κ2 + κ1)2 (3.51)
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3 Radioglaciology - Radio Wave Propagation through Ice

3.3 Permittivity of Ice

3.3.1 Physical Properties

Generally, ice is water frozen into solid state. The properties of ice1 (cf. Table 3.1) can vary substantially
with temperature, impurity, porosity and other factors.

Table 3.1: Properties of Pure Water Ice (f = 500 MHz, T = −7◦C).

Density (ρ) Refractive index (n∗) Dielectric constant (εr)
n κ ε′ ε′′

0.91617 g
cm3 1.7861 0.0002 3.1902 0.0007

Ice is a naturally occurring solid substance, has a well-defined crystallographic structure and has a
fairly well-defined chemical composition, thus, according to International Mineralogical Association, it
is considered to be a mineral (Nickel and Grice, 1998). There exist currently 19 types of solid crystalline
phases of water that are known which distinguish in their density and crystal system.

Types of Ice

∗ Amorphous ice - ice without crystalline structure, i.e. without long-range order

∗ Ice Ih - hexagonal crystalline ice

∗ Ice Ic - cubic crystalline ice where the oxygen atoms are arranged in a diamond structure (formation
temperatures of 130 K up to 220 K)

3.3.2 Crystalline Structure of Ice and Conductivity Mechanism

The water molecule (H2O) is composed of two hydrogen atoms and one oxygen atom: H
O

H
Its shape is in form of an isosceles triangle, since an asymmetric order would not be stable. The molecule
can form, because oxygen has six valence electrons and therefore shares two pairs of electrons with
hydrogen in a water molecule. These are called homeopolar or covalent bonds. They result in a positively
charged net around in vicinity of the hydrogen atoms that distorts the electron clouds around the oxygen
atom and therefore leads to a concentration of negative charge on the opposite side. Consequently, the
positions of the two hydrogens correspond to two of four vertices of a tetrahedron centered on a oxygen
atom whereas the other two vertices correspond to the centers of the negative electron clouds. One has
four centres of electric charge (2+, 2-) corresponding to four vertices of a tetrahedron altogether (Glen
and Paren, 1975). Notwithstanding the existent electron clouds surrounding the hydrogen, they are
not strong enough to neutralize the positive charge. In total, water is a neutral molecule with a large
dipole moment induced by the aforementioned orientation polarization. The legs of the triangle are not

1https://refractiveindex.info/?shelf=3d&book=crystals&page=ice, Last access on 26th of June 2021
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3.3 Permittivity of Ice

arranged rectangular because of the repulsion between the positive charges of the two hydrogen atoms.
As a consequence of this repulsion, the legs of the triangle are forced open beyond 104.5° at a distance
of 95.8 pm between H and O. Because of its polarity, the water molecules can form up hydrogen bonds
between the negative charge concentration and positive charge concentration of one molecule to another
below the boiling point. They are about 10 times stronger than Van der Waals forces that attract atoms
or molecules to each others. In liquid phase, the hydrogen bonds form up and break simultaneously but
with decreasing thermal motion by cooling, these bonds pull the molecules together to a rigid crystalline
structure of ice whereas the apex increase to 109.5°. Each oxygen with its for nearest neighbours build
a four-fold tetragonal order which leads to sheets of crinkled hexagons stacked one on top of another
Further, the density decreases, respectively, the volume occupied by the molecules increases because the
packing of molecules less compact in the solid (Bogorodsky et al., 2012).

Bernal-Fowler rules

Under normal pressure and temperature conditions, the nuclei have no crystallographic arrangement,
meaning that there exist no long-range order but are randomly arranged except for some requirements.
In 1933 the British physicists John D. Bernal and Ralph H. Fowler in essence proposed two rules
that should describe the arrangement of atoms in water ice, since the molecular vibration of ice was
found to be similar to those of a free water molecule in Infrared and Raman spectra (Bogorodsky et al.,
2012):

1. There is one and only one proton per O-O linkage (binding force between water molecules)

2. There are two and only two protons associated with each oxygen atom (ice is not ionized)

with the exception of a proton disorder by high residual entropy of the ice. The electrical properties
of ice are not defined by the crystalline structure per se, but by the violation of that structure. The
breaches of the Bernal-Fowler rules, namely, producing point defects in the structure of ice which first
was described by Niels Bjerrum (Glen, 1968). Three kinds of crystallographic defects specific to ice
were postulated:

1. Violation of tetrahedral bonding (occurrence of vacancies or interstitial molecules)

2. Orientational defect: Violation of the first BF rule. Occurrence of either

i two protons (D-Defect, from Danish: Dobbelt = double) or

ii none proton (L-Defect, from Danish: Ledig = empty)

along the O-O bond.

3. Ionic defect: Violation of the second BF rule. Occurrence of either

i one proton (resulting in OH−) or

ii three protons (resulting in H3O+)
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associated with individual oxygen atom.

The ionic defects arise from proton jumps from one end of an O-O bond to the other, resulting in an
ionized state that heaves the energy level and is metastable. More importantly, the finite time to jump
from one bond to the other by overcoming the energy barrier, in small fraction of cases, allows the
proton to remain in the displaced position long enough for another proton from the same molecule to
jump to a third oxygen. Thus, the oxonium ion and the hydroxide ion, produced in pair, are separated
by a simple H2O which allows them to move free through the crystal until they encounter ions charged
with the opposite sign and get destroyed. Bringing all this together, the electrical conduction in ice
depends upon the movement of these ion states through the crystal. The orientational defects, which
are produced in pair too, represent the more important defects (1 per 107 molecules versus 1 per 1012

molecules). A proton jumps and “surpasses” the other proton of the water molecule leaving a hole at the
O-O bond, which now is occupied by no proton, while the O-O bond of the other molecule linkage is now
occupied by two protons. Alternatively, one can describe this process by a rotation of a molecule around
one of its bond through an angle of 120°. Again, the finite time of this jump or rotation facilitates the
stabilization of the defect pair through another proton jump (or rotation). Both, the process of ionic and
the orientational defects are thermally activated, therefore their concentration will be proportional to a
Arrhenius function exp

{
− ∆H
kBT

}
, where ∆H is the activation enthalpy (energy). Its generation requires

0.7 eV and its migration through the crystal 0.25 eV at a temperature of -10°C.

Defects due to Impurities

Defects can arise from impurities. In this case the water molecule is doped with foreign atoms. For
example, let us take hydrogen fluoride (HF). On the one hand, one can substitute HF with H2O as a
whole. Then, one bond which had one of two hydrogen of H2O has no more hydrogen, which complies
with a L-defect with no corresponding D-defect and is the dominating defect in ice at temperatures near
the melting point. On the other hand, consider the chemical reaction of HF +H2O = F−+ H3O+, which
obviously corresponds to an ionic defect (Glen and Paren, 1975).

Summary

Jaccard’s theory of conduction in an ice crystal sums up, as already discussed above. When an external
electric field is absent, equal numbers of tetrahedra will be oriented in all orientations allowed by the
ice structure so that there is no net electric dipole moment. But if an electric field is applied, then it
is energetically favourable for dipoles to be aligned in a particular direction whose number is given by
statistical mechanics of the system (Barnes et al., 2002). Conduction takes place by protons moving
(diffusing) through the ice lattice under influence of the electric field and enabled by the presence of
lattice defects. They produce point defects and rotating/reorienting water molecules as they pass that
partly gives ice its dielectrical properties such as permittivity. The concentration of these defects is
temperature-dependent but can also be increased by doping the ice crystal with impurities, generating
the ionic and Bjerrum L- and D-defects. The speed of response to the electric field is correlated to the
number and mobility of those L defects, which then determine the relaxation time (Jaccard, 1964).
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Nonwater Ices

Ice on Enceladus is widely pure water ice over the entire surface, with the exception of the SPT. There,
a non-vanishing fraction of CO2 in the ice was detected. It is scientifically not proven yet, if it occurs as
a pure phase, is enclathrated with water ice (i.e. incorporated in the ice crystal) or adsorbed on other
species, or a combination of all three. From measurements, the following electromagnetic properties of
CO2 ice are known in the MHz-GHz range (Pettinelli et al., 2015):

• ρ = 1.50 g cm−3

• ε = 2.12± 0.05

• σ = 10−9 − 10−7 S m−1

3.3.3 Dielectric Properties of Monocrystalline and Polycrystalline Ice

If an ice crystal is now exposed to an external electric field, one will have two kinds of responses, namely,
polarization and conduction. The former takes place by dipoles lining up parallel to the electric field
which is caused by the proton jumps that induce orientational defects. Thereby, the bound charges
undergo a local redistribution to a new equilibrium position, storing and dissipating energy. The de-
velopment of this polarization has a time delay, since the protons have to overcome the energy barrier
thermally. Therefore, the length of the time delay is dependent on temperature. The latter effect, the
conduction, takes place when free charges are present, dissipating energy as well. So far, only stationary
electric field were regarded. Let the electric field be time-varying:

E = E0 · eiωt (3.52)

then, with given permittivity and loss tangent the electrical displacement D = εE can be written as:

D = D0 · ei(ωt−δ) (3.53)

where D0 = |ε|E0. The aforementioned polarization and conduction effects can be describe by a sum
of density currents JT = Jc + Jd = σsE + ∂D

∂t , where D = ε0 + P = ε0εE, Jc the conduction current
density and Jd the displacement current density. If an alternating field with frequency ω is applied to
the material, the total current density can be written as:

JT = σsE + iωε0εE = (σs + ωε0ε
′′)︸ ︷︷ ︸

:=σ

E + iωε0ε
′E = σE + iωεoε

′E (3.54)

where σ is the effective conductivity which describes the energy loss in the material. Here, σs is associated
with the conduction of steady (dc) current, thus, the inelastic scattering of free charge carriers during
their migration in the material at all frequencies (Pettinelli et al., 2015), wherein the diffusion of either
type of defect (orientational or ionic) leads quickly to a fully polarized state, in which proton transfer
is impossible. Accordingly, σs is the ratio of current density to the applied electric field (Bogorodsky
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et al., 2012). Further, ωε0ε
′′ is the term describing the friction during the polarization process and

increases linearly with ω but vanishes for ω = 0. The imaginary part ωε0ε
′E describes the polarization

in the material due to the displacement current. With this knowledge about the static conductivity, the
complex permittivity can be redefined:

ε = ε′ − i(ε′′ + σ

ωε0
) = ε′ − i σ

ωε0
(3.55)

and the loss tangent as well:

tan δ =
ε′′ + σs

ωε0

ε′
(3.56)

Figure 3.1: Dispersive behavior of the complex permittivity. (Pet-
tinelli et al., 2015)

The polarization is proportional to
exp{− t

τ }, thus, the rate of a proton
jumping to a certain orientation and the
relaxation time τ is dependent on the
probability of a protonic jump, described
by an Arrhenius function that shows the
temperature dependency. Hence, the
permittivity shows a dispersive behavior
in the frequency domain. The most com-
mon model was developed by P. Debye
and is valid for lots of geomaterials in a
broad frequency range up to Gigahertz’s.
The equations belonging to this model
are called standard Debye equations:

ε(ω) = ε∞ + εs − ε∞
1 + i ω

ωrel

− i εs
ωε0

(3.57)

The real and imaginary part of the complex permittivity are now given by:

ε′ = ε∞ + ∆ε
1 + ( ω

ωrel
)2 ε′′ = σs

ωε0
+

∆ε · ω
ωrel(

1 + ( ω
ωrel

)2 ) (3.58)

where

• εs, σs - static values of ε′ and σ

• ε∞, σ∞ - high-frequency limit of ε′ and σ, i.e. alternating current (ac) conductivity

• ∆ε = εs − ε∞ - dispersion strength

• ωrel = 1
τrel

- relaxation angular frequency where τrel is the relaxation time (∼ pico-seconds)

If the amplitude of the real and imaginary parts are plotted against frequency, one will get the so-called
idealized Debye spectrum, which indicates the dispersive behavior of the dielectrtic function. First thing
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that can be noted is that ε′′ attains a maximum of εs−ε∞
2 for ωrel = τ−1, the characteristic relaxation

angular frequency (cf. Fig. 3.1). The effective conductivity can be written as σ = σs+(σ∞−σs) · ω2

ω2+ω2
rel
,

where σ∞ = σs+ ε0(εs− ε∞)ωrel is the high-frequency limit of σ. For ω � ωrel the effective conductivity
approaches σ∞, the real part of permittivity approach the frequency-independent value ε∞ while the
imaginary part behaves like σ∞

ωε0
and thus ε′′ → 0 for ω → ∞. Polycrystalline ice is a crystalline

solid consisting of many crystallites (or grains), i.e. little crystalline sub-structures that are separated
by grain boundaries. Their electrical parameters are similar to those of monocrystalline ice and at the
anisotropies such as grain boundaries, their values are close to those of the values taken with the electric
field perpendicular to the c-axis. However, there are two aspects in which they differ to the mono-
crystals: the deformational history (such as plastic deformation) and metamorphic history (was the ice
formed by direct freezing from liquid state, or by cold metamorphism of snow, or by metamorphism of
snow but with subsequent temperatures close to the melting point?). But, the statements made here
are only valid for frequencies less than ωrel; there is no experimental evidence that this is also valid for
radar frequencies (Bogorodsky et al., 2012).

Looyenga Model for Dielectric Correlation between Powder and Bulk

The admittance Y , which usually is measure for the current flow and the reciprocal of the impedance
Z, can be used to describe the polarization or susceptibility of an ice lattice under the influence of an
alternating field. Since it is a complex quantity, it can be written in terms of the conductance G(ω),
which corresponds to the real part of the complex conductivity σ′(ω) and capacitance C(ω), which
corresponds to the real part of the relative permittivity ε′(ω):

Y (ω) = G(ω) + iωC(ω) (3.59)

In the high-frequency limit σ′(ω) reaches a plateau that is denoted with σ∞. Each of the dielectric
components can be represented by such an equation of the complex admittance yj :

yj = σj DC + iωε0εj (3.60)

Models of describing the pure component of the conductivity of polar ice with varying density in depth
were adequately discussed in the past. Hence, statements can be made about the dielectric properties
of different intermediate states of ice (snow, firn, ...). This is achieved by considering a heterogeneous
dielectric mixture of air and ice, where spherical inclusions that form one in the other component are
included and cause a change in density. Dependent on this density, i.e. if one consider high-density ice
or low-density firn, one may view these spherical inclusions either as air bubbles or as spheres of ice in
the air, respectively. First a model of Böttcher was the most widely used (Böttcher, 1952) until both
Landau and Lifshitz (1960) and Looyenga (1965) independently proposed a model for a the dielectric
correlation between powder and bulk at microwave and radio frequencies, that is, a scenario with such
a dielectric mixture dependent on the volume packing fraction v in order to describe its high-frequency
behavior σ∞ pure. Let ε be the relative permittivity of the mixture and ε1, ε2 the relative permittivities
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of the two components in the mixture. Then models can be described using the following relations:

ε
1
3 − ε

1
3
1 = v

(
ε

1
3
2 − ε

1
3
1
)

[Landau-Lifshitz-Looyenga] (3.61)
ε− ε1

3ε = v(ε2 − ε1)
ε2 + 2ε [Böttcher] (3.62)

Both of them are suitable in order to describe the permittivity of low-density firn through to solid ice
but, for the sake of simplicity, the following will be limited to the Looyenga model. It provides an
accuracy of 3− 8 % for particle sizes less than 30 µm (Dube, 1970). Since a part of the mixture is air, ε1

can be set to ' 1 and the other other part consists of the pure ice component, thus ε2 = ε∞ pure = 3.17
for ρ = 920 kg m−3 and T = −18◦C. For a low loss tangent above the Debye dispersion frequency of ice,
the permittivity of snow can be expressed using the Looyenga equation 3.62:

ε∞, snow = (1 + 0.496v)3 (3.63)

and the high-frequency conductivity of this mixture, σ∞Looyenga(v), by taking the imaginary part of
Equation 3.63 (Glen and Paren, 1975):

σ∞, snow ' σ∞, Looyenga = σ∞, pure(1) · (0.68 + 0.32v)2 (3.64)

Conductivity of Ice Crystals containing Impurities

Doping an ice crystal with impurities generally leads to an increase in conductivity. Wolff et al. (1997)
identified a linear relationship between the high-frequency limit σ∞ and the acid concentration. σ∞ can
then be expressed as a sum of all impurity contributions to the pure ice component (σ∞, snow ≡ σ∞, pure):

σ∞(v) = σ∞ pure(v) +
∑
i

βi(v)ci (3.65)

where βi is the molar conductivity of each impurity component and ci is their molar concentration. Now
consider firn containing impurities under the influence of a DC current (ω = 0). The admittance (Eq.
3.60) then has no imaginary component. The DC conductivity of air is zero. Subsequently,

σDC(v) = σDC(1)v3 (3.66)

The DC conductivity of pure ice is approximately zero. This implies that σDC corresponds to a net
bulk conductivity of both ice crystals and the salt molecules incorporated in or around them. σDC(1)
stands for the non-porous (solid) ice and is dependent on the salt concentration. Overall, this means
that σDC is the DC conductivity if the ice was solid, corrected for density. This model can be applied
to the impurity content of the ice (Moore et al., 1989):

βi(v) = βi(1)v3 (3.67)

and combined with the correction of Looyenga’s model of conduction (Shabtaie and Bentley, 1994):

βi(v) = βi(1) · v · (0.68 + 0.32v)2 (3.68)
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Conductivity of Sea Water

The permittivity of saline water is frequency-, temperature- and salinity-dependent. Sea water mainly
is fresh water with several dissolved salts and therefore is a good conductor. Thereby the salinity is
a parameter that is a measure for the concentration of the ionic salts, that is, the total weight of
the dissolved salts in the solution in grams per kilograms or parts per thousands (ppt), respectively.
Consequently, the conductivity of water increases approximately to the same extent as ions are added
(σ ∝ NIons added). A good approximation that is very close to reality for frequencies in the range of 1 to
1000 GHz is given by the Debye model. The augmentation of polarization due to the displacement of
bound charges depends on the salinity of the water due to the ions added. Thus, εs and ε∞ are functions
of the sea water’s salinity. This will be further elaborated below.

Debye’s Theory

Debye describes the relationship between the relative permittivity εr and the frequency of electromagnetic
waves in a dielectric medium. He makes the assumption that the molecules are free and do not interact
to each other. Placing the dielectric substance in an external static electric field leads to polarization
(dipole moment per volume). Debye investigated the two contribution of polarizations (i.e. induced
and orientation polarization) in terms of the relative permittivity. The induced polarization happens
almost instantaneously and takes the value of ~PI = ε0(ε∞−1) ~E. The alignment of the molecules instead
take a finite amount of time which rises exponentially. The time-constant τ of the exponential term
is the so-called relaxation time. For t → ∞ the orientation polarization attains the value of ~PO =
ε0(εs − 1) ~E − ε0(ε∞ − 1) ~E. In total, the polarization for a static field is ~P = ~PO + ~PI = ε0(εs − 1). The
frequency dependence of εr is given by the following formula:

εr(ω) = ε∞ + εs − ε∞
1 + iωt

(3.69)

Figure 3.2: Cole-Cole plot of the dielectric
function of fresh water at 0 °C.
(Source: wikipedia.org (a))

but note that the permittivities are functions of temper-
ature, thus: ε∞ = ε∞(T ) and εs = εs(T ). This model is
based on the idealisation that there is no intermolecular in-
teraction (see above) so that this formula is highly limited
in accuracy. If several relaxation times instead of a single
one are allowed (something like a distribution of relaxation
times) then it may be better to use Cole-Cole model of per-
mittivity (Cole and Cole, 1941). It is rather an empirical
model than a physical one and provides an higher accuracy
for plenty of dielectrics:

ε(ω, T ) = ε∞(T ) + εs(T )− ε∞(T )
1 + (iωτ)1−α =

Debye-Model, for α = 0

Model with stretched relaxation, for α > 0
(3.70)

where 1 − α is the Cole-Cole exponent with 0 ≤ α ≤ 1. In some cases the models by Cole-Davidson,
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or Havriliak-Negami can fit better to experimental data. Since the water contains impurities, the per-
mittivity, as mentionned above, depends on a third parameter, the salinity. The main goal is to find a
interpolation function for σ(T, S) in order to calculate εr(ω, T, S) in an aqueous saline solution. Sub-
sequently, the role of the ionic and organic content in sea water regarding the permittivity can be ex-
plained. This can be achieved by deducing polynomial interpolation functions for the Debye parameters
τ(T, S), εs(T, S), ε∞(T, S) through least-squared-regression from experimental data. These parameters
are linear functions of S. The average difference between the interpolation and the measurements deviate
by less than 1 % and fits perfectly to the permittivity model. The relative permittivity εr typically can
be stated by the following expression:

ε(ω) = ε0 · εr(ω) = ε′ − i · ε′′ = ε0 · (1 + χe) = ε′ · (1− i · tan δe) (3.71)

and by using the Debye model (cf. Eq. 3.69) with interpolated Debye parameters, separating the real
and imaginary part and adding the conductivity term, it can be approximated by (Ellison et al., 1998):

εr(ω, T, S) =
(
ε∞(T ) + εs(T, S)− ε∞(T )

1 + (ω · τ(T, S))2

)
− i ·

(
σ(T, S)
ω · ε0

+ ω · τ · (εs(T, S)− ε∞(T ))
1 + (ω · τ(T, S))2

)
(3.72)

where ω = 2πf is the angular frequency, τ is the relaxation time (delay of particles to respond to the
field change), ε∞ is the high-frequency limit of the permittivity whereas εs is the low-frequency limit
(static permittivity) and ε∞ is a parameter that is well-known for fresh water. It is usually set to ≈ 81
at T= 25◦C (and ≈ 88 at T= 0◦C, cf. Fig. 3.2), while εs ≈ 4 (Karagianni, 2015). The relaxation time
of fresh water is about 8.28 ps at T= 25◦C and 17.57 ps at T= 0◦C (Ellison, 2007), but since the salt
contribution is considered, interpolation functions should be used. The complex relative permittivity of
Enceladus’ salt water ocean is then given by (cf. Eq. B.26 & B.27):

εEncr = 85.355− i · 90.884 (3.73)

if the upper estimate of salinity (S = 30ppt) is considered which will be used in the simulation of this
thesis. For a detailed derivation see the appendix B.

3.4 Ices and Subsurface Salt Water Ocean on Enceladus

In the following section, different types of terrestrial ices will be discussed, weighing if they could occur
on Enceladus, as well as the chemical composition and dielectric properties of its possible existing ocean.

3.4.1 Terrestrial and Nonterrestrial Water Ice

Three different types of ices have been seen on Earth yet: meteoric ice, sea ice and marine ice. The type
of the ice has an impact on the radar penetration depth and therefore it is important to study possible
scenarios on Enceladus. On Earth, as well as on Enceladus, the ice is composed of polycrystalline Ice
Ih. These ices form ice bodies of different origin, location and extension (e.g. ice sheets, ice shelves, ice
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caps, glaciers, etc.) which have different structures and impurity contents.

Sea Ice

This type of ice is formed by freezing of ocean water close to the atmospheric interface (Moore, 2000).
On the supercooled water surface some small and needle-shaped ice crystals (so-called frazil or slush ice)
accumulate to a mushy, oily and congealing layer (so-called grease ice). Its structure has several phases
(gas, liquid brines, solid salts and other impurities) and therefore sea ice has a relatively high salinity
(12− 15h). Of the dissolved salts, NaCl makes up the largest proportion (Pettinelli et al., 2015).

Meteoric Ice

Meteoric ice is produced by atmospheric precipitation (snow) that forms glaciers and ice sheets (Moore,
2000). Snow is a porous medium of air, ice crystals and small amounts of chemical impurities. This
precipitation of snow flakes is followed by a densification process due to snow accumulation and gravity
and transforms snow into firn. The latter is a terminus for compacted snow that underlies freshly
fallen snow and is by definition at least one year old. It has a higher density dependence on the
compaction strength (' 830 kg m−3). The compaction seals the water- or air-filled connecting paths,
forming polycrystalline ice that only has individual bubbles and affects the size of the ice crystals. This
is pressure-dependent, so that in glacier ice bubbles only exist above a critical depth (Pettinelli et al.,
2015).

Marine Ice

The existence of marine ice is a special case of ice found on Earth, beneath the Amery Ice Shelf in
Antarctica. It forms from frazil ice crystals directly in the ocean water where the ice platelets accu-
mulate at the ice shelf bottom, building a mushy ice layer and leading to a compaction similar to the
firn densification process of meteoric ice. Small grains lie at the top of the older, upper layer, whose
conductivity is about 100 times lower than the meltwater at the bottom and is mainly free of air bubbles.
On the other hand, the lower part which is hydraulically connected to the ocean water is highly porous.
Marine ice has a high salinity and therefore attenuates radio waves to a greater extent.

Discussion

According to Moore (2000) and other authors, sea and meteoric ice could not be present on Europa due
to the lack of an atmosphere of Europa (as well as of Enceladus), since they are formed at the ocean-
atmosphere interface and ice formation and metamorphism occurs under different physical and chemical
conditions in comparison to Earth (Pettinelli et al., 2015). The presence of marine ice or conceptually
similar forms of it, on the other hand, is seen as a possible scenario, since processes that run on Earth
could occur at the ice-ocean interface.
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Special Case: Sintering Processes and Sintered Water Ice Particles on Icy Moons

Sintering is a temperature-dependent metamorphism process where two neighbouring particles nestle
together by forming a sinter neck (grain-to-grain contact area) between them. This formation is due
to the need of the system to minimize its surface energy which leads to mass transport into the neck
region that enlarges temporally. Its study is important in order to survey the (thermal) evolution of
icy planetary surfaces. To sum up, the material undergoes a densification (compactification) process at
sufficiently high temperatures and experiences grain growths. For water ice particles (snow) the domin-
ant transport process is the transport of water vapor, i.e. the sublimation of water-ice molecules from
the surface and their recondensation in the neck region. Enceladus produces micrometer-sized water

(a) (b)

Figure 3.3: Schematic of a sintered particle (a). Two particles stick together at the grain boundary
(sinter neck). Sinter neck formation of bronze particles in a scanning electron micrograph
(b) (German, 2014).

ice particles through its cyrovolcanically plumes. The larger particles fall back onto surface, stratify-
ing it in a layer consisting of snow-like granular powder. The icy moon has an elevated temperature
on the SPT near the Tiger Stripes. It is therefore legitimate to scrutinize if sintering process could
occur there. According to Gundlach et al. (2018), a temperature of 80 K is still not sufficient for
sintered ice to occur since it requires a formation time that is longer than the age of the Solar System.

Figure 3.4: Sintering timescales for different temper-
atures and celestial bodies in the Solar
System (Gundlach et al., 2018)

Molaro et al. (2019) emphasize that many surfaces
in the Solar System where sintering could be relev-
ant contain salts such as NaCl (e.g. Jovian moon
Europa and Enceladus). The abundance of salts can
have a significant effect on the sintering timescales
and reduces the ice melting temperature and thus
increases the sintering rate. On Enceladus, a 0.1 µm
grain has a sinter timescale of ∼ 103, but with an
abundance of 2% of NaCl per mass it would lower
the melting temperature to 270 K. For pure water
ice, this means an increase of the surface temperat-
ure up to 81 K and a decrease of the timescale to 102

yr. For larger grains that exist near the Tiger Stripes
this effect is smaller. However, for 1 µm particles an
eutectic mixture of water and NaCl would lower the
melting temperature down to 253 K which means an increase of the sinter timescale from above to below
the age (cf. Fig. 3.4) of the Solar System (Molaro et al., 2019).
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3.4.2 Stratification of Terrestrial Glaciers and on Enceladus

Glaciers on Earth are more complex layered than the ice structure on Enceladus is (cf. Fig. 3.5a). The
ice on Enceladus is much colder (cf. Fig. 3.5b) and in contrast to the terrestrial glaciers it is unlikely
that they have water content. Furthermore, the Enceledan ice is much purer (σ < 1µSm−1) than the ice
terrestrial glaciers. Except of a possible existing sintered snow and a granular ice layer, the ice structure
on Enceladus can be regarded as largely homogeneous. Hereby, the probability of a sintered snow layer
is greater in vicinity to the geysers because of the higher heat output (cf. Fig. 3.5b).

(a) Different ice layers of terrestrial glaciers and on Enceladus. As the distance
increases to the geyser-active fractures, the more likely is to find unconsol-
idated geyser deposits. Terrestrial glaciers are more complex layered due to
larger density/porosity variations as a consequence of snow metamorphism
and ablation. Source: Friend and Kyriacou (2021)

(b) Ice properties of a terrestrial gla-
cier versus the ice structure on
Enceladus. Souce: Kyriacou
(2018)

Figure 3.5: Stratification of Terrestrial Glaciers and on Enceladus

3.4.3 Terrestrial Seawater and Subsurface Salt Water Ocean on Enceladus

Seawater, that is, water with dissolved salts from a sea or an ocean, on Earth has an average salinity
of about 35 ppt and a range of pH between 7.9 and 8.25 (average of 8.08) (Raven et al., 2005) to a
depth of 50 m, is therefore slightly basic. The most frequently occurring salt is by far sodium chloride
(Na+(aq) + Cl−(aq)) with a salt concentration of 0.47% by mass (molality), followed by magnesium
sulfate (Mg2+(aq)+SO2−

4 (aq)). Most likely the possible subglacial ocean of Enceladus contains dissolved
sodium chloride as well and is expected to be 0.05-0.2 molal. The salinity of the ocean is expected to be
in a broad range of 4-40 ppt, but for a balanced heat budget that would enable the existence of microbial
life organisms, the salinity is indicated to take values between 10 and 30 ppt (Kang et al., 2021), which is
only slightly lower than the Earth’s average. However, there might exist a discrepancy in the pH. Since
direct measurements could not have been done yet, the pH of Enceladus is unknown, but various models
have been presented in the past. Postberg et al. (2009) has identified sodium carbonate (Na2CO3)
and/or sodium bicarbonate (NaHCO3) from which he estimated a pH range of 8.5-10.5. However, this
is difficult to reconcile with the substantial amount of CO2 found in the plume gas. Another approach
using a thermodynamic model of carbonate speciation at the conditions of Enceladus’ sub-environmental
life was suggested in order to determine the pH (Glein et al., 2015). By combining the chemical data
of the mass spectra from CDA, which identifies the abundance of NaCl and NaHCO3/Na2CO3 in the
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salty and basic plume particles, and of INMS, which outlines a significant amount of CO2 in the water
vapor dominated plume gas, a pH range for the ocean of 11-12 could be derived. Enceladean ocean
water would be thus in a clearly alkaline range (corresponds to an ammonia solution) and similar to
soda lakes in Earth (e.g. Mono-Lake in California) where multifaceted eco-systems have been found. In
total, this model including chemical equilibrium calculations, predicts a Na-Cl-CO3 water (Glein et al.,
2015). A high pH of Enceladus’ subsurface ocean leaves a lot of room for speculation in terms of its
cause(s). Nonetheless, knowledge about the pH is of huge geochemical and astrobiological interest, since
it can tell whether the environment is habitable for life forms or not. A possible explanation is a process
called serpentinization where the sea floor of Enceladus’ ocean interacts with the chondritic/ultramafic
rock of the core. Thereby, olivine containing rocks react to rocks with serpentinite minerals, a process
that is well-known from Earth, where iron- and magnesium rich minerals emerge from the sea floor and
are washed around by the water, which subsequently becomes basic. Interestingly, molecular hydrogen
is produced from serpentinization processes. This reaction is also related to the methane formation
already discussed above (CO2 +4H2 →CH4 +H2O, cf. Fig. 3.6). It could drive both biotic and abiotic
synthesis of organic compounds and therefore act as a chemical energy source for life (McKay et al., 2008).
Additionally, amino acids can be generated, which are a sort of building blocks for life and nutrition
for microorganisms. Yet it remains unclear, if such processes are still ongoing or already extinct, but a
direct detection of native hydrogen can provide clarification about that (Affholder et al., 2021).

Figure 3.6: A possible explanation for the abundance of methane. CH4-molecules are formed due
to geochemical reactions and emitted by hydrothermal vents: in this case, the water
circulating at the ground of the ocean is involved in geochemical reactions with the rocky
core, where olivine and water react to methane, which could explain the small amount of
methane in the plumes. The trapped methane (CH4) is then surrounded by water (H2O)
in the ocean, also known as clathrate (in chemistry a clathrate is an inclusion compound
of two chemical substances, of which a guest molecule is embedded in a lattice or cage
of a host molecule). There might be more complex reactions which induce heavy organic
molecules. Source: NASA/JPL (2015)
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4
Methods of Simulating the Radio Wave Propagation

through a Dielectric Medium

4.1 Motivation and Goals

Since Finite-Difference Time-Domain (FDTD) methods are full-field solutions, they turn out to be
computationally highly expensive. On the other hand, Ray Tracing (RT) is to simplistic and does not
account for wave-like phenomena. Both methods will be discussed later. At this point, the methods
using the Parabolic Equation (PE) for in-ice radio propagation may be investigated in more detail, which
are computationally more efficient than FDTD and include diffractive effects in contrast to RT.

4.2 The Parabolic Equation (PE)

The PE is a second-order, linear, constant-coefficient partial differential equation (PDE) and is an
approximation of Maxwell’s wave equations solutions. It models the energy propagating in a cone
centered on a preferred direction, which is called paraxial direction (and will be the positive x-direction
here). These types of PDE’s can be hyperbolic, elliptic or parabolic depending on the coefficients a, b,
and c (Apaydin and Sevgi, 2017). The implicit equation of a parabola is an irreducible polynomial of
degree two:

ax2 + bxy + cy2 + dx+ ey + f = 0, such that b2 − 4ac = 0. (4.1)

This is an analytical geometry equation and has exactly the same form as the PE of a function u = u(x, y):

A∂2
xu+ 2B ∂xyu+ C ∂2

yu+D∂xu+ E ∂yu+ F = 0, such that B2 − 4AC = 0. (4.2)

This is where the terminology parabolic equation comes from. The PE will first be solved in a domain,
where the refractive index n = n(x, z) has only minor variations from that of vacuum (i.e. n = 1 + δn)
and the boundaries at the top and on the bottom are assumed to be flat (PE-methods have a lack in
boundary modelling, this means that for more complex boundary conditions, additional methods should
be consulted). In that case, the wave equation can be treated with Fourier transform techniques, which
simplifies the solution process. If more strongly varying refractive index profiles are present, the situation
is more complex. For that purpose, Hardin and Tappert (1973) presented a split-step/Fourier method
where the propagation through the vacuum is superseded with a sequence of phase screens.
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4.2.1 Derivation of the Wide-Angle Parabolic Equation (WAPE)

Let us start with an arbitrary field ψ, which is polarized along the y-axis in a Cartesian system, re-
spectively Ψ, which is polarized along the angle θ in a cylindrically symmetrical system. For horizontal
polarization the only non-zero component of the electric field ~E is this direction of polarization (Ey /
Eθ). On the other hand, for vertical polarization the magnetic field ~H has the only non-zero compon-
ent in these directions (Hy / Hθ). The scalar wave equation with an eiωt-time dependence for a wave
propagating in a homogeneous medium with refractive index n is (~∇2− 1

v2∂
2
t )ψ = 0. For k0 = ω0/c (k0 is

a reference wavenumber that is allocated to the wavenumber k at the depth of the source) and v = c/n

the propagation velocity where c is the vacuum speed of light this can be rewritten as:

∂2ψ

∂x2 + ∂2ψ

∂z2 + k2
0n

2 = 0 Cartesian (x, y, z) (4.3)

∂2Ψ
∂x2 + 1

x

∂Ψ
∂x

+ ∂2Ψ
∂z2 + k2

0n
2 = 0 Cylindrical (x, θ, z)1 (4.4)

In the following, only the cylindrically symmetrical case is considered, which is useful for many application
examples in the radar range. Let

u =
√
k0xe

−ikxΨ (4.5)

so that insertion into 4.4 yields

∂2
xu+ 2ik0∂xu+ ∂2

zu+ k0(n2 − 1)u = − 1
4x2u (4.6)

and for dimensionless coordinates ξ = k0x, ζ = k0z:

∂2
ξ + 2i∂ξu+ ∂2

ζu+ k0(n2 − 1)u = − 1
4ξ2u (4.7)

where u = u(x, z) is called reduced function. In far-field approximation, i.e. for large k0x� 1, which is
allowed for problems of interest in radio propagation applications, the r.h.s of Equation 4.7 approaches
zero and eliminates the singularity produced by the cylindrical source. Factoring 4.4 and applying the
far-field approximation x� 0 leads to:[(

∂x + ik(1−Q)
)(
∂x + ik(1 +Q)

)]
u = 0 (4.8)

where Q =
√

1
k2

0
∂2
z + n2 is a pseudo-differential operator. This is only true for a homogeneous medium

with constant n. If the refractive index varies with range x, than the operator Q does not commute with
the range derivative operator ∂x, i.e. [Q, ∂x] 6= 0, and the factorization is not correct. Therefore, caution
is advised for applications, where this error should be kept as small as possible. The solutions of the
PDE in Equation 4.8 will be in a splitted and solved simultaneously in the form of two paraxial terms

u(x, z) = u+(x, z) + u−(x, z) (4.9a)

1Note: xcartesian 6= xcylindrical. The latter notation is commonly used in radar literature instead of ρ.
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with
∂xu± = −ik0(1−Q)u± (4.9b)

where ± corresponds to forward respectively backwards propagating waves, that is, these are the PE
for outgoing and incoming waves. In the following, the solution for forward propagating fields shall be
considered (u+ ≡ u). The solution

u(x) = eik0x(−1+Q) (4.10)

Since the PE-solver is a split-step solver, and thus, we want to calculate the field for the next position
(x+ ∆x) in each case, Equation 4.10 changes to

u(x+ ∆x, z) = eik0(x+∆x)(−1+Q) = eik0∆x(−1+Q)u(x, z) (4.11)

From this expression it can easily be seen that the solution of u(x+ ∆x), thus, the forwards propagating
field at a given range, only depends on the previous solution or range u(x), significantly reducing the
computational time of the code compared to the elliptic wave equation, which has to be solved simul-
taneously at all points in the integration domain. Since Q is a non-local and non-analytical operator,
in order to find numerical solutions of Equation 4.9b, take the lowest-order Taylor expansion of the
square-root and exponential functions. It will return a quite good approximation for small values of n
that change slowly with the height z and for a narrow range of angles within a few degrees. This does
not work for all problems (e.g. in-water acoustic propagation). The expansion results in an simple form
of the PE, which is called the standard parabolic equation (SPE) and is a second-order, linear PDE:

∂2
zu+ 2ik∂xu+ k2

0(n2 − 1)u = 0 (4.12)

and is, as above-mentionend, a narrow-angle approximation of the parabolic wave equation. Since the
first term in the Taylor expansion is 1

k2

∣∣∂2u
∂z2

∣∣ = sin2 α, the error is proportional to sin4 α. In concrete: it
is 10−7 for an angle of 1°, 10−3 for 10° and 10−2 for 20°. Feit and Fleck (1978) find an expression for the
operator Q that can be applied for simulations considering wider angles and for more strongly varying
n. It has the same lowest-order expansion as the SPE but differs at higher order. If Q =

√
1
k2

0
∂2
z + n2 is

written as
Q =

√
1 +A+B (4.13)

then with the assumption that the operator can be split into (Guan et al., 2018):

Q =
√

1 +A+B ∼
√

1 +A+
√

1 +B − 1 (4.14)

where
A = 1

k2∂
2
z B = n2 − 1 (4.15)

the expression can be subdivided into a refractive and diffractive part:

QFF ∼
√

1 + ∂2
z

k2
0︸ ︷︷ ︸

diffractive

+ n− 1︸ ︷︷ ︸
refractive

(4.16)
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with an error of ∆Q = O(AB). Finally, the Feit-Fleck WAPE is obtained through insertion into Equation
4.9b:

∂u

∂x
= ik

(√
1 + 1

k2
0

∂2

∂2
z

− 1
)

+ ik0(n− 1)u (4.17)

This approach is suitable when n ∼ 1, which corresponds to in-air-radio or in-water-acoustic cases
(Prohira et al., 2021). This is not the case for in-ice-scenarios, thus, a different approximation for Q is
to be used:

Qice ∼
√

1 + ∂2
z

k2
0

+ n

√
1 + 1

n2
0
−
√

1 + n2

n2
0

(4.18)

It has the the same lowest-order expansion as the SPE and differs at high orders as well.

4.2.2 Split-Step Parabolic Equation (SSPE) Fourier Transform Solution

The solution of the PE has to be done numerically. An efficient tool is the Fourier transform: transform
the PDE, solve the transformed equation in the spectral domain (which is simpler and more efficient) and
transform the solution back to the original domain. This has only be done for the diffractive component,
since the refractive part can be solved via simple multiplication. The Fourier transform of u(x, z) is:

U(x, p) = F(u(x, p)) =
∫ +∞

−∞
u(x, z)e−2πipzdz (4.19)

and the inverse Fourier transform:

u(x, z) = F−1(U(x, p)) =
∫ +∞

−∞
U(x, p)e2πipzdp (4.20)

The inverse Fourier transform in Equation 4.20 simply is the decomposition of the field u(x, z) on a
vertical into an angular spectrum U(x, p) of plane waves depending on a spectral variable p. In order
to proceed, two identities of the Fourier transform, which is a linear operator and satisfies a derivation
rule, should be used:

F(a · f + b · g) = a · F(f) + b · F(g) (4.21a)

F(Dαf)(ξ) = i|α|ξ|α|F(f)(ξ), f ∈W k,2(Rn) = Hk(Rn), |α| ≤ k (4.21b)

where f is a k-fold weakly differentiable L2-function in Sobolev space and Dα is the derivative operator
of the α-th order. Applying Equation 4.21b to this case yields:

i) F(∂2
zu) = −k2

zF(u) ii) F(∂xu) = ∂xF(u)

Hence, together with the identity 4.21a, the Fourier transform F of the SPE (Eq. 4.12) leads to:

∂xU = ik0
2

[
(n2 − 1)− k2

z

k2
0

]
U (4.22)
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where U(x, kz) = F(u(x, z)) and kz is now the spectral variable. Analogously to Equations 4.9b and
4.10, this differential equation can be solved using the exponential function

U(x, kz) = exp
[
ik0
2

(
(n2 − 1)− k2

z

k2
0

)
x

]
(4.23)

and the split-step solving method:

U(x+ ∆x, kz) = exp
[
ik0∆x

2

(
(n2 − 1)− k2

z

k2
0

)]
U(x, kz) (4.24)

Finally, take the inverse Fourier transform to recompose the solution into the original domain again:

u(x+ ∆x, z) = exp
[
ik0∆x

2 (n2 − 1)
]
×F−1

{
exp

[
− i∆x

2
k2
z

k0

]
U(x, kz)

}
(4.25)

This is the split-step solution (SSS) of the standard parabolic equation (SPE). Again, the pseudo-
differential operator Q can be modified to suit to the in-ice scenario with more strongly varying re-
fractive indices and wider angles to Qice (cf. Eq. 4.18). The final SSS of SPE that is implemented in
paraPropPython is given by the following expression (Prohira et al., 2021):

u(x+∆x, z) = exp
[
ik0

(
n

√
1 + 1

n2
0
−
√

1 + n2

n2
0

)
∆x
]
×F−1

{
exp

[
−ik0∆x

√
1− k2

z

k2
0

+1
]
U(x, kz)

}
(4.26)

An example of a PE-simulation can be seen in Figure 4.1.

Figure 4.1: Simulation of the EM waves in a refractive index profile from Taylor Dome Ice Sheet in
Antarctica with random density fluctuations included.
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4.2.3 Summary and Interpretation

Parabolic Equation methods are an approximation of the full wave equation. In this case it calculates
the reduced electric field, which is cylindrically-polarized along θ within a certain narrow-angular range
in the paraxial propagation direction (i.e. within a cone) in far field. For wider angles with respect to the
paraxial direction, and, in order to describe radio propagation in a dielectric medium, PE can provide
stepping solutions, since it is a split-step solver. This means, in order to calculate the electric field at
some distance from the source x+ ∆x, only the electric field at the previous step x is required (cf. Eq.
4.11). Thereby, each step in the spatial domain is split in a diffractive and refractive component. For
the time-domain, similar Fourier transform techniques can be applied (Prohira et al., 2021).

4.3 Finite-Difference Time-Domain (FDTD)

Finite-Difference Time-Domain or Yee’s method (named after the mathematician Kane S. Yee) is a
grid-based numerical modeling method in order to integrate time-dependent differential equations and
is therefore predominately applied to solve Maxwell’s equations. The basic idea of Finite-Difference
methods (FDM) is to approximate the spatial derivatives in the differential equation at finitely many
equidistant grid points by central difference approximation. For example, in vacuum it is (Sullivan,
2013):

E
n+1/2
x (k)− En−1/2

x (k)
∆t = − 1

ε0

Hn
y (k + 1/2)−Hn

y (k − 1/2)
∆x , (4.27)

where n means a time step t = ∆t · n. Maxwell’s equations consist of such spatial derivatives and
time-dependencies: the temporal change of the electric field is given by the spatial change (rotation) of
the magnetic field and vice versa (cf. Eq. 3.1 & Eq. 3.2). First, the computational domain should be
defined. By means of a so-called Yee-lattice, the space is staggered into several electrical and magnetical
grid points (2D) or voxels (3D) and thus the Maxwell’s equations become discretized and replaced by
a set of finite difference equations (Yee, 1966). Each cell can be specified in terms of its material (free
air, dielectric, metal). After that, the source should be defined, which can be current on a wire, an
electric field, or a plane wave. The finite-difference equations are solved by a software or in a leapfrog
scheme (hardware): The electric field vector components are solved at a given instant in time in a space
volume. Then, the magnetic field components are solved in the same volume at a next instant in time
and depends on the stored value of the previous magnetic field and the numerical curl of the electric
field. This process is iterated repeatedly for all of the grid points in this alternating manner so that wave
propagation through a numerical grid stored in computer memory can be simulated. One beneficial point
is that by a single simulation the response of a wide range of frequencies can be obtained when using
a broadband pulse, since FDTD is a time-domain solver. Disadvantageous, however, is probably the
fact that the computational domain must be finite and can only be solved by introducing appropriate
boundary conditions such as a „perfectly matched layer“ (PML), which involves errors. Otherwise,
the outgoing fields will be reflected back into the problem space and superimpose the desired solution
(Sullivan, 2013). Besides, for an accurate solution the gridded domain must be fine enough to grasp the
smallest wavelengths and smallest geometrical features (e.g. long, thin wires), leading into an extremely
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high computational time and large memory requirements. Essentially, FDTD differ from PE methods
by the definition of the source and the boundary conditions.

Figure 4.2: Staggered lattice (Yee-grid) used in FDTD. Source: wikipedia.org (2015). Credit: Filip
Dominec

4.4 Ray Tracing (RT)

Ray Tracing (not to be confused with ray tracing from 3D computer graphics) is a standard simulation
technique in order to calculate the path of waves or particles through an optical medium with changing
refractive index, absorption characteristics and reflecting surfaces. It makes use of geometrical optics,
where a ray is an idealized model of light: a ray is a straight or curved line that is perpendicular to the
light’s wavefronts. Hence, a wave can be modeled as a series of many narrow beams (rays) that in a
certain small distance can assumed to be locally straight (Spencer and Murty, 1962). In terms of wave
optics, RT takes the infinite frequency limit where the wave change to a ray. The procedure looks as
follows: the incident ray is advanced by a small amount, exactly the small distance where it is straight,
through the medium with changing refractive index (Andersen and Kak, 1982). At each step, the new
direction of the ray is calculated from which the new ray is sent out (cf. Fig. 4.3). Following this concept,
this can be done over and over again until the full path is completed. It can account for direct signals,
that is, signals that travel without interceptions with the surface, and reflected signals from two-layer
boundaries (for example air/ice). RT algorithms use approximations to Maxwell’s equation but is not
capable to describe wave phenomena such as interference and diffraction. Consequently, in contrast to
wave or field methods, where the field is solved at each point regardless of which path the rays take, RT
cannot find solutions in forbidden zones (so-called shadow-zone propagation), caused by total internal
reflection. Hence, for in-ice scenarios in order to detect neutrinos for example, RT over-simplifies wave
propagation, so that a reconstruction of their incident direction seems to be impracticable (Prohira et al.,
2021), and thus gets outperformed by FDTD and PE methods. Notwithstanding, RT can not be replaced
for vast simulation geometries due to its super-fast computational time. A 1.5 km x 1.5 km domain can
be solved within 30 minutes with PE, but it is still longer than with RT (Prohira et al., 2021).
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Figure 4.3: Advanced incoming ray that is assumed to be straight within each layer. Source: wikipe-
dia.org (2008). Credit: Vanessa Ezekowitz

4.5 Dipole Antennae

Whether idealized or in reality, (transmitting and recieving) antennae are used in radar wave techniques
and modeling. antennae are technical arrangements for the radiation and reception of electromagnetic
waves. As a transmitting antenna (hereafter denoted as TX) it converts conducted electromagnetic
waves into free-space waves, or conversely, as a receiving antenna, it converts electromagnetic waves
arriving free-space waves back into conducted electromagnetic waves. A dipole antenna is an antenna
with a center-fed driven element for transmitting and receiving radio frequency waves. It consists of a
straight electric conductor such as copper, which is interrupted at the center in order to be fed, into
two wires that produce the poles (cf. Fig. 4.4a). The most common used dipole antennae are half-
wave dipole antennae, i.e. antennae whose total length is about half the wavelength they are driven
with. The radiation pattern of an antenna is associated with the directional (angular) dependence of
the electric field strength. The field of a dipole is omnidirectional in the plane perpendicular to the wire
axis and vanishes to zero on the axis. The radiation pattern of an half-wave dipole has a sin2 θ-shape
and is therefore maximum perpendicular to it and declines to zero on the axis. In three dimensions,
the radiation pattern has a toroid or doughnut shape (cf. Fig. 4.4b). By means of a hertzian dipole,
which is an idealization an electromagnetic wave transmitting object, the radiation of real transmitting
antennae as well as the directivity of real receiving antennae as a measure of the gain, can be calculated.

(a) (b)

Figure 4.4: Electric (blue) and magnetic (red) field lines transmitted during the radiation of an half-
wave dipole antenna (black) (a). Source: wikipedia.org (b). Simulation of the 3D radi-
ation pattern (b). Source: comsol.de
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The source implemented in paraPropPython is a vertically polarized dipole source at depth z0 and halves
of L = λ

4 . The ẑ-component of the reduced field within this source region is defined by

u(0, z0 − L : z0 + L) = A[n̂× ε̂× n̂]z (4.28)

where A is a complex amplitude. n̂ is a unit vector that points out radially from the dipole and
ε̂ = (0x̂, 0ŷ, 1ẑ) is the polarization vector of the antenna (Prohira et al., 2021). For the identification of
obstacles the received power of high-gain antennae can be considered. It limits the range of a surface-
penetrating radar and is mainly dependent on material loss, spreading loss and target-reflection or
scattering loss (Ltot =

∑
i Li). A more precise breakdown of all contributions can be read in Daniels

(1996). The power Pr, which is proportional to the inverted fourth power of distance for a point reflector
and can be calculated by Frii’s transmission formula:

Pr
Pt

= GtAr
(4πR2)2 (4.29)

where Pt is the transmitted power, G is the gain of the TX and Ar is the receiving aperture and R is
the range to the target. The spreading loss can be expressed as

Ls = 10 log10
Pr
Pt

= 10 log10
GtAr

(4πR2)2 ∝
1
R4 (4.30)

and the attenuation loss decreases with an exponential function:

La = e−2αR (4.31)

For the identification of a flat water pocket the received power is proportional to the inverted second
power of distance:

Pr
Pt

= GtAr
4πR2 ∝

1
R2 (4.32)

The attenuation loss is La = e−αR. Finally, the total loss is proportional to the transmission coefficients
of the ice-water boundary layer:

Ltot ∝ (1− tice→water) · e−αR (4.33)

with tice→water defined by Equation 3.51:

tice→water =
2√εwater√

εwater +√εice
(4.34)

4.6 Codes

The codes that run the simulations and analyze the A-Scans and the B-Scans can be looked up on
GitHub: https://github.com/boccarella/paraPropPython.git.
paraPropPython.py and Run-Simulation.py are also attached in the appendix D. The data of the simu-
lations S1-S5 can be requested by contacting me at the following email:
gianluca.boccarella@uni-wuppertal.de
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5
Radio Wave Simulation in a Realistic Scenario on

Enceladus

In this chapter, realistic simulation domains on Enceladus, consisting of multiple-layer dielectric profiles
will be shown. “Realistic” means within the scope of possibilities available here: from Cassini data,
especially from mass spectrometries of CDA that examined the chemical compositions of the plume
particles and their deposition rates on the surface, the required dielectric parameters are determined.
They are derived in the appendix B.

5.1 Methods of Analysis

The aim of this work is to perform simulations of a radar scan of Enceladus’ like ice with a water pocket
and then attempt to reconstruct the depth of the water pocket and to prove the scope of application of
so-called borehole ground-penetrating radar methods. To be able to do this, a couple of radar techniques
are required, which will be presented in the following section.

5.1.1 A-Scan processing: Simulation of the Propagation Time

In order to find the time (TOF) that both the direct transmitted signal and the reflected signal take
during their propagation through the dielectric medium, the following methods of time-domain simula-
tions are a valuable method to derive it. As a first step, a Gaussian pulse (cf. Fig. 5.1) with central
frequency of fc = 500 MHz is created.

Figure 5.1: Example of a Gaussian Pulse sampled at 100 Hz for 2 seconds. The blue line is the
imaginary component, the orange line is the real component and the green dashed line is
the envelope which has the form exp(−a · t2) · exp(2πi · fc · t).
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5.1 Methods of Analysis

This input signal can be decomposed in its constituent frequencies in a complex spectrum by using a
Fourier transform. For reasons of efficiency, a Fast Fourier Transform which is an algorithm used to
compute discrete Fourier transforms will be applied (cf. Fig. 5.2). In so doing, the simulation can
be run for each single frequency at a each single source depth. Hereby, the dipole amplitude of the
source is set as the complex amplitude at each frequency, which will be used to solve the electromagnetic
field for a given source depth across the simulation geometry. After propagating through the medium
with losing energy (attenuation) and interacting with the boundary layers of the media with different
permittivity by scattering (refraction, reflection and diffraction) the complex amplitude of the incident
pulses are sampled at the desired RX positions in a received spectrum. The received spectra can be
recomposed back into their original state by using the inverse Fourier transform. These receiver signals
are also known as A-Scans. To filter out unwanted frequency components, a high-pass filter is applied.
The propagation time of all reflected and non-reflected signals can be extracted by looking at the time
domain of the pulses at each RX position.

Figure 5.2: Gaussian Pulse sampled at 500 MHz for 1000 ns with a pulse center of 200 ns and an
amplitude of 1.0 (top) FFT of the the pulse that converts from the time domain into the
frequency domain (bottom).
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5.1.2 B-Scan processing: Borehole Ground-Penetrating Radar

Borehole Ground Penetrating Radar or Borehole Radar (BHR) is a commonly used geophysical mapping
tool to identify, localize and characterise buried objects of interest within the subsurface environment of
the Earth (Slob et al., 2010) or of other planets like water-bearing crevasses on Enceladus, henceforth
denoted as “water pocket”. It can be applied together with SAR by utilizing a so-called transceiver,
i.e. a combined transmitting and receiving antenna that moves (“bores”) vertically through a borehole
(cf. Fig. 5.3) drilled in the ice. This method including two boreholes is named crosshole GPR while
two more methods exist using only a single borehole (Slob et al., 2010). At each transceiver depth
the time-domain waveform is measured (A-Scan) with the method presented above. By combining the
sampled A-Scans for each pair of transmitter and receiver at equal depth relative to each other, a B-Scan
can be generated. It reproduces the strength of the electric field as a function of depth and time in a
color map that can be used with regard to absorptions and reflections. GPR-based characterizations

Figure 5.3: Schematic representation of a crosshole GPR measurement in two dimensions. A trans-
mitting and receiving antenna pair bore through the ground in order to measure a planar
reflector (Slob et al., 2010).

can be classified into two categories of surveys, namely reflection and transillumination (Craig Jones and
Hudyma), that depend on how the antennas are moved and how many boreholes exist. Reflection surveys
can be surface reflection surveys where both the TX and the RX are moved over a certain distance in
a specified pattern scanning the whole area over the surface and mapping the subsurface, or reflection
borehole surveys where both antennae move within a single borehole. Types of transillumination surveys
are shown in Figure 5.4. By using the Zero Offset Profiling (ZOP), the antennae are lowered to the same
depth in parallel (Craig Jones and Hudyma). This latter principle will be transferred to the simulations.
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5.1 Methods of Analysis

Figure 5.4: GPR-based transillumination surveys. TX and RX can be lowered at the same depth (a),
TX is fixed and RX is lowered (b). Both are crosshole configurations. If the TX is located
on the surface and the RX is lowered at various depths, one speaks of a hybrid-surface
method (Craig Jones and Hudyma).

5.1.3 Single-Layer-Scattering

The computation of the water pocket depth is based on simple geometric considerations (cf. Fig. 5.5).
The path length s that the reflected wave will travel can be calculated from the propagation velocity of
the wave and the delayed time of its arrival. The velocity of a wave in a dielectric medium is related to
the real part of the permittivity (refractive index) of the medium and the speed of light:

s = vwave · tdelayed = c√
ε′r
· tdelayed ⇐⇒ s2 = c2

ε′r
t2delayed (5.1)

In order to calculate the depth d where the flat water pocket is located, the Pythagorean theorem will
be used, since the triangles are right-angled:

d2 +
(
r

2

)2
=
(
s

2

)2
⇐⇒ d =

√
s2

4 −
r2

4 (5.2)

dwater = 1
2

√
c2

ε′r
t2delayed − r2 (5.3)

This gives the distance from the water pocket to the transmitting/receiving antenna. Thus, for the
distance from the surface to the water pocket Equation 5.3 should be corrected by the factor of the
antenna’s actual depth dantenna:

dwater = 1
2

√
c2

ε′r
t2delayed − r2 + dantenna (5.4)
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5 Radio Wave Simulation in a Realistic Scenario on Enceladus

Figure 5.5: Sketch for the derivation of the One-Layer-Scattering Algorithm. Hereby s is the path
length for the reflected signal, r is the range between TX and RX and d is the depth of
the flat water pocket (blue) that has to be calculated. Refraction is not shown in the plot.

5.2 Simulation Geometries

To test the accuracy and validity of this simulation method, it will be started with a highly simplified
case of pure ice with a density of 920 kg/m3 and a water pocket at 50 m of the surface with a flat
boundary between the ice and water. The complexity of the domain will be consecutively increased,
achieving a sufficiently good approximation of the circumstances on Enceladus in the last simulation.
The simulations will be labelled S1 to S5 (cf. Tab. 5.1).

1D Refractive Index Profile, Small Scale

The TX and RX positions as well as the one-dimensional refractive index profile are shown in Figure
5.6 for the 3-layer scenario with pure water ice. The TXs are placed in a range from 0 to 50 m depth
separated 2 m apart from each other. The RXs are positioned in an array of [10, 20, 30, 50, 80, 100] m at
equal depths to the TXs. The depth of the water pocket is set to 50 meters. The absolute field calculated
across the whole simulation geometry is shown in Figure 5.7. The radiation pattern of the half-wave
dipole antenna is clearly visible (it is equivalent to Fig. 4.4b in 2 dimensions). Since water is a highly
transparent medium at frequencies in the visible spectrum but not at radio frequencies, scattering effects
at the boundary layer cannot be recognised well and a logarithmic scale would be required to visualize
it. As already discussed above, PE-methods, take the wave character into account unlike RT-methods,
which is highly visible in Figure 5.7 based on the lighter and darker areas in the pattern. The refraction
at the ice-vacuum boundary layer can be identified by means of the horizontal line at the surface (z = 0
m) and the upwards going beams. The amplitude does not decrease significantly over the range of 120
m as to be expected in the ice (qualitatively from 0.010 at the source to 0.003).
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5.2 Simulation Geometries

Figure 5.6: Positions of the receiving (RX, orange) and transmitting (TX, blue) antennas embedded
in the ice with a range of 100 m (left) and one-dimensional, 3-layer refractive index profile
(S1) comprising of vacuum, ice and water (right) used for the simulation.

Table 5.1: Labels used for the simulations in this work.

Simulation Scenario
S1 1D, vacuum + pure ice + flat water
S2 2D, vacuum + conductive snow + pure ice + flat water
S3 2D, vacuum + conductive snow + pure ice + triangular water
S4 2D, vacuum + conductive snow + sintered snow + pure ice + triangular water
S5 2D, vacuum + conductive snow + sintered snow + pure ice + triangular water + meteors

Figure 5.7: Absolute field calculated with the split-step solution of the standard parabolic equation
with a source at 25 m depth in the ice, a flat water pocket at 50 m and a central frequency
of fc = 500 MHz.
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5 Radio Wave Simulation in a Realistic Scenario on Enceladus

2D Refractive Index Profile, Large Scale

The two-dimensional refractive index profiles of S2-S5 are shown in Fig. 5.8-5.11. The surface of the
water pocket might be at 10 % of the way down to the ocean Dotson (2018). Therefore, the 400 meters
chosen here are a realistic assumption. Depending on the geyser model, the water-filled area might be
triangular-shaped or flat so that the assumptions made here are probably in good agreement with the
reality. The ice crust on Enceladus can be assumed to be homogeneous except for the CO2 abundance
on the SPT in the ice (cf. chap. 3.3.2). For the sake of simplicity, it will be assumed a layer of pure ice.
The snow layer is set to 25 m in accordance with geyser particle deposition rate data (cf. Fig. C.1 &
C.2). In total 540 RXs are placed throughout the whole simulation domain while 27 of them are placed
along each column in the z-axis in increments of 20 meters starting from -25 m (vacuum) up to 495 m
(ice or water) and 20 of them are placed along each row in the x-direction. The signals are sampled for
12000 ns.

Figure 5.8: Multiple layer simulation geometry S2 of 1000 m width with a flat water layer (blue), a
500 m deep pure ice sheet (grey), a 20 m conductive snow layer consisting of sedimen-
ted sodium-bearing Type-III particles (pink) and the non-dielectric space (black). This
illustration is not to scale.
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Figure 5.9: Multiple layer simulation geometry S3 with an isosceles, triangular water pocket (blue)
at 400 m respectively 500 m with a basis of 100 m length and legs of 111.8 m length. This
illustration is not to scale.

Figure 5.10: Multiple layer simulation geometry S4 with an isosceles, triangular water pocket (blue)
and two layers of consolidated and unconsolidated geyser deposits. This illustration is
not to scale.
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Figure 5.11: Multiple layer simulation geometry S5 with an isosceles, triangular water pocket (blue)
and four circular meteoric rocks of different sizes (radii from 10 to 25 m). The position
of the center point is indicated in the dark blue brackets and is in meters. The complex
permittivity of meteoric rock is determined by Hérique et al. (2018). This illustration is
not to scale.

Permittivities and Refractive Indices

The simulation makes use of different complex permittivities and refractive indices. These were repres-
ented and derived before and now compiled in Table 5.2.

Table 5.2: Complex permittivities and refractive indices calculated via Eq. 3.30 for the simulations
S1-5

Simulation εr = ε′ − i · ε′′ n∗ = n− i · κ

S1 ice: 3.2− i · 7 · 10−5

water: 74− i · 1.8
1.8− i · 1.9 · 10−4

8.6− i · 0.1

S2-4

snow: 3.2− i · 7 · 10−5

snow: 1.2− i · 0.139
saline water: 85.355− i · 90.884
meteor: 8.2− i · 0.1558
sintered ice: 1.2− i · 0.721

1.8− i · 1.9 · 10−4

1.097− i · 0.063
10.248− i · 4.434
2.864− i · 0.027
1.800− i · 0.203
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Transmission and Reflection Coefficients

To be able to make statements about the absorption of the radio waves, the reflection and transmission
coefficients, that make up a part of the signal loss, are shown in Table 5.3 for all relevant boundary
layers. Saline water has the lowest transmission due to the impurities as discussed in chapter 3.3.2.

Table 5.3: Transmission (t) and Reflection (r) Coefficients for the Simulations S1-5 calculated via Eq.
3.51 and the refractive indices from Tab. 5.2.

r t

ice-vacuum 0.078 0.922
ice-snow 0.057 0.943
ice-water 0.556 0.444
snow-vacuum 0.012 0.988
snow-sintered snow 0.061 0.939
sintered snow-ice 0.052 0.948
meteors-ice 0.052 0.948
ice-saline water 0.961 0.039

5.2.1 Reference Simulation for Signal Filtering

The reflection spectrum is ambiguous due to the large number of reflections, some of which are superim-
posed on each other. If only the reflection from the water is to be analyzed, the receiver signal must be
filtered out by the direct transmitted signal and the reflection from the surface (ice-vacuum interface),
as the strength of the water reflection is suppressed, especially in the area near the surface. Figure 5.12a
shows the unfiltered signal with the direct pulse and the two reflections (oblique lines). For the water
reflection analysis only the oblique line going from the lower left to the upper right is relevant. The rest
should be filtered out. This is possible by performing a so-called reference simulation where the simula-
tion geometry only consists of the ice- and the vacuum-layer. By subtracting this reference simulation
from the main simulation, only the water reflection (except for small disturbances and inaccuracies of
the simulation) will be visible in the spectrum. Figure 5.12b shows the filtered spectrum where the water
reflection makes up the largest share.

(a) Unfiltered spectrum in a 3-layer scenario in S1 (b) Filtered spectrum in a 3-layer scenario in S1

Figure 5.12: B-Scans at a distance of R = 20 m between TX and RX in S1.

49



5 Radio Wave Simulation in a Realistic Scenario on Enceladus

5.2.2 Refractive Index of the Simulation

The TOF of the pulse was measured through the medium and it was found that the TOF was larger than
expected for the simulation. Thus, the refractive index in the simulation does not match the previously
set parameter value. This might be a consequence of an unknown programming error in paraPropPython,
that has not been fixed yet. To avoid this error, a scaling of the time axis is carried out in the following
way: first, the time axis is normalized to 1 by dividing by the “wrong” TOF at a given range and
any depth. Since the correct TOF of a wave propagating through a dielectric medium (i.e. the direct
transmitted signal in ice) with given refractive index is known, the time axis can be multiplied by this
correction factor. Hence, the TOFs of the reflected pulse are scaled in the same manner, producing
correct results. In order to find this correction factor, the following formula should be considered:

tcorr = s

v
=
r ·
√
ε′r,medium

c
(5.5)

and thus
Tnew = Told

TOFi
· tcorr (5.6)

where Told, Tnew are the time axes before and after the correction and TOF i is the TOF at any depth i.
The refractive index of the simulation nsimul can be determined by performing a linear fit of the TOFs
across the whole range. It is given then by the slope (cf. Fig. 5.13).

Figure 5.13: Linear Fit of the TOFs across the receiving antenna range in order to determine the
refractive index of simulation nsimul.

5.3 Results for the Small-Scale Simulation

In this section, the results of the small-scale simulation for pure ice and on Enceladus are discussed.
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A-Scans

A-Scans were taken for each depth and range in the simulation geometry. In Figure 5.14 the absolute
pulse of the directed transmitted peak, the reference simulation, the subtraction of both and a “depth-
spectrum” at a transceiver depth of 2 meters and a range of 20 meters are shown for the pure ice scenario.
By means of Equation 5.4 the time axis is transformed into a depth axis, showing a broad spectrum of
water pocket depths. Both, the TOFs of the direct transmitted pulse and of the maximum peak of the
water reflection are given in the legends. Note the amplitude in Figure 5.14 is scaled by 10−6. Note
also the decrease in the amplitude of the water reflection compared to the absolute pulse of the main
simulation. The true and calculated water pocket depth are in good agreement with each other with
the antennae being at 6 m depth (deviation is less than 1%). Here it was assumed that the first and
strongest arriving signal is the reflection according to Figure 5.5 that is required to calculate the water
pocket depth. The results (cf. Fig. 5.17) show that the algorithm using a simple geometrical derivation
is precise enough to describe the reflection from the flat water pocket and calculates the the water pocket
depth to be:

dicesimul = 51.46 m (5.7)

which corresponds to a deviation of 2.84 % from the true value. The reflection spectrum consists of
multiple, consecutively arriving reflected signals (cf. Fig. 5.14), which are partly superimposed on each
other. They might be consequences of interferences and second-order reflections. The latter means
a reflection that scattered first at the ice then at the ice-vacuum boundary layer at the surface and
reflects back to the RX. However, the calculation of the water pocket depth is based on the simple
assumption that the reflection occurs exactly at R/2, equivalent to Fermat’s principle of least time. The
linear behavior of the water pocket depths increasing with increasing depth of the antennae cannot be
conclusively clarified and justified. These observations will be important when discussing the large-scale
simulations and possible explanations will therefore be given below.

B-Scans

If the TX and the RX are lowered down in parallel, sampling the pulses across the whole range of the
depth profile, a B-Scan can be produced. Figure 5.15(a-f) shows B-Scans at different distances R between
the TX and the RX. A B-Scan displays the amplitude of the electric field along the depth axis and with
the corresponding time-of-flight of the signal component. The colorbar is in a logarithmic scale, i.e., the
amplitude is given in units of decibels. The vertical yellow line indicates the direct transmitted signal.
In the case of a distance of R = 10 m (cf. Fig. 5.15(a) between the two antennas, this means that a radio
wave that was reflected neither at the ice-vacuum boundary layer nor at the ice-water boundary layer
took about 300 nanoseconds to get from TX to RX in this simulation. The oblique lines represent the
vacuum reflection and the water reflection, respectively. Thereby, the yellow line going from the upper
left to the lower right represents the reflection of the vacuum and vice versa, the water reflection is
represented by the yellow line going from the lower left to the upper right. All three signals move to the
right in the time-domain with increasing range of the antennae, what is to be expected. Since the sample
interval is 1000 ns, the yellow features do not exceed this value of time value and start again at 0 ns going
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Figure 5.14: A-Scans of the unfiltered-, reference-, and filtered signal (blue, yellow, red) and derived
water pocket depths (blue) of the small-scale simulation in ice.
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from the left to the right. A B-Scan can provide an approximate estimate of the amplitude. Compared
with the amplitude at a distance of 10 m of the antennae to each other, which is at -40 dB, the amplitude
decreases to roughly -55 dB. In general, the reflections are weaker in amplitude and are more smeared
out than the direct transmitted signals since they are incumbent upon scattering and spreading losses.
As already seen in the A-Scans, the reflection spectrum consists of multi-component peaks, i.e. reflection
could occur in more than one reflection point, or the scattering process show dispersive behavior. This
will be further elaborated when analyzing the large-scale simulations. The oblique yellow features of the
water reflection show a sort of curvature or kink in vicinity of the ice-water interface. This might have
to do with the simulation being imprecise by allowing a strongly varying refractive index n = 1 + δn (cf.
chap. 4.2) as the simulation was designed for terrestrial glaciers with density fluctuations. It should also
be considered that wide-angle approximation still produces some errors. The simulation can be enhanced
by using very-wide-angle approximations such as Padé-methods (Levy and Zaporozhets, 2000). Since
the implementation of an algorithm and the explanation of this method would go beyond the scope of
this thesis, this can be read in Apaydin and Sevgi (2017).

(a) R = 10 m (b) R = 20 m (c) R = 30 m

(d) R = 50 m (e) R = 80 m (f) R = 100 m

Figure 5.15: Crosshole GPR (or Parallel Depth Scans) across the whole range in x-direction.

A commonly used technique in Borehole GPR applications is a so-called fixed depth scan as it is less
effort. The TX is maintained at a fixed depth while the RX is lowered down across the depth range.
Figure 5.16(a-f) shows fixed depth scans for several TX-RX pairs at different distances to each other and
a fixed depth of 20 m. The direct transmitted signal is now (symmetrically) sickle-shaped as the radio
waves take the shortest distance if the TX and the RX are at the same level, while they take longer
as they move away from the source depth. For longer distances the radius of curvature of the sickle
becomes smaller. Further, for long distances the water reflection becomes ambiguous and smears out.
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(a) R = 10 m (b) R = 20 m (c) R = 30 m

(d) R = 50 m (e) R = 80 m (f) R = 100 m

Figure 5.16: Fixed Depth Scans. The TX is at a fixed depth of 20 m and the RX is lowered across
the whole depth range in z-direction. The colorbar has a wider extent as in the parallel
depth scan plots.

Water Pocket Depth

Figure 5.17: Calculated water pocket depths in dependence on the transceiver depth. The red line
gives the average of the 25 values.

5.4 Results for the Large-Scale Simulation

In this section, the results of the large-scale simulation are presented.
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A-Scans

A-Scans from S2, i.e. a 4-layer simulation geometry with a flat water pocket but on a larger scale in
contrast to S1, are shown in Fig. 5.18(a-h). A radio wave that directly (without reflections) propagates
from TX to RX with a distance of 495 m to each other in a crosshole GPR takes 2953.58 ns in pure
ice, 1808.69 ns in the snow and 1651.10 ns in vacuum. The strongest first arriving signal occurs in the
snow layer and has an amplitude of 0.030 · 10−6 with a TOF of 6016.29 ns (cf. Fig. 5.18a), which is
slightly more than three times than the amplitude of the direct transmitted signal. It can be observed
in the water reflection spectrum how double peaks occur (cf. Fig. 5.18), moving closer to each other for
increasing antenna pair depth until they merge completely into each other at a transceiver depth of 115
m. These double peaks are in turn composed of ambiguous smaller peak components. This behavior
could be the cause of non-water reflections, since they have been almost but not completely filtered out
by the reference simulation. Another possible explanation is the occurrence of second-order (or more
generally: higher-order) reflections, but they cannot be justified with the TOFs because they would have
to be higher for the first double peaks at least. Another explanation is that there might be some errors
in the simulation. In this specific case this would mean: the stronger peak of the double peaks is the
reflection according to the abovementioned single-layer scheme where the reflection occurs at R/2. The
other peak could be a reflection of a radio wave that does not exactly scatter in the geometric center
between TX and RX, but in a small environment around this point. This could be the consequence of
the simulation allowing strongly varying refractive indices as well as it was shown in the parallel depth
scans in the small-scale simulation, affecting the propagation direction of the wave. Initially, the code
was designed for such cases (a boundary layer between ice and vacuum), but the change in refractive
index is more significant for the case of ice and saline water. Since the distance between the double peaks
decrease with increasing depth of the antennae, this error disappears with decreasing distance between
antennae and water pocket (reflection target). The PE models the energy propagation within a paraxial
cone in a certain angular range. Thus, it is most precise for the horizontal direction and less precise if
the reflection occurs vertically. As the antennae are lowered down, the incident angle becomes smaller
and the the vertical reflection component is lower. A further possible explanation is the occurrence of
dispersive effects that were hinted when discussing the small-scale simulation: a radio wave incident on
a conductive optical medium like saline water could be split into multiple frequency constituents at the
boundary layer, generating many smaller waves whose direction of propagation depends on the respective
frequency. Interactions like interferences between these waves are conceivable as well. However, it cannot
be conclusively clarified within the frame of this work and must be investigated by modification of the
simulation code.

B-Scans

A parallel depth scan of S4 with a distance of R = 550 m between TX and RX is shown in Figure 5.19.
The yellow vertical feature, corresponding to the direct transmitted signal and the yellow oblique feature,
corresponding to the surface reflection at the sintered snow layer are clearly recognizable. The other
oblique line in the opposite direction, that appeared in S1, does not appear here, as the water pocket is
triangular and not flat. From this B-Scan, the triangular water pocket cannot be identified. The radio
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(a) transceiver depth: -25 m (snow-vacuum
boundary layer) (b) transceiver depth: -5 m (snow)

(c) transceiver depth: 15 m (pure ice) (d) transceiver depth: 35 m (pure ice)

(e) transceiver depth: 55 m (pure ice) (f) transceiver depth: 75 m (pure ice)

(g) transceiver depth: 95 m (pure ice) (h) transceiver depth: 115 m (pure ice)

Figure 5.18: A-Scans of S2 showing the water reflection spectrum in the time domain at a distance
of R = 495 m.
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5.4 Results for the Large-Scale Simulation

waves might be reflected in several distinct directions as the shape of the water target is irregular. Also,
the simulation is designed for flat boundaries, since for split-step/Fourier methods it is difficult to model
appropriate boundary conditions (Ehn, 2019) that are therefore not put in by hand, but instead the
fields are reflected from the surface as if there were a density fluctuation within a continuous n(z)-profile
(Prohira et al., 2021). On the other hand, by looking at the colormap, the amplitude of the direct signal
decreases significantly between 400 and 500 m depth where the water pocket is located. Two smaller
and weaker oblique lines occur below 400 m depth and around 7000 ns and 9000 ns, respectively. Those
features, however, are hard to interpret and cannot yet be explained. The effect of the sintered snow
layer in S4 is present: the refraction, that is, a shift in the time domain of the direct pulse in all 4 layers
distinguishable by different green-blue tones, and most clearly at the sintered snow-pure ice interface is
visible. As the imaginary parts of the complex permittivity of sintered snow and the conductive granular
snow were set to be equal (cf. Tab. 5.2), there is no time shift at their interface. However, an attenuation
effect of the sintered snow can be seen from the amplitude, in accordance with the transmission and
reflection coefficients (cf. Tab. 5.3).

Figure 5.19: Crosshole GPR with ZOP (or Parallel Depth Scan) in the large-scale simulation S3 based
on the 4-layer structure with a triangular water pocket on Enceladus.

Absolute Field

The absolute field plots of S1, S3 and S5 are shown in Figure 5.20(a-i). If the source is buried in the
conductive snow layer, a large part of the signal is attenuated in a triangle-shaped area (this does not
refer to the water pocket) that is horizontal to it (cf. Fig. 5.20d). If the geyser-deposited snow layer
on Enceladus has about the same impurity level as assumed here, this would mean that measurements
according to the Vertical Radar Profile method, where the receiver antennas are on the surface, could
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5 Radio Wave Simulation in a Realistic Scenario on Enceladus

not adequately reproduce large parts of the subsurface environment, due to high attenuation of the snow
layer. Hence, borehole methods, where the antennae are located beneath the snow layer, seem to be
more suitable for such a scenario. However, the triangular shape of the water pockets can be clearly
reproduced in those simulations. If the source is lowered down to higher depths, then the triangle, which
was set to be isosceles, becomes non-isosceles (cf. Fig. 5.20e) or even loses its triangular shape due to
its own shadow (cf. Fig. 5.20f). Small parts at the rear edge of the triangle are nevertheless illuminated.
Here the wave character of the radio source becomes apparent and indicates a correct representation on
the part of the PE simulation methodology. A melting probe must avoid suddenly appearing obstacles
like meteoric rocks. They can be seen if the antennae are embedded in the ice (cf. Fig. 5.20h & 5.20i)
but not when they are embedded in the snow (cf. 5.20g). They lose their circular shape for the same
reasons as for the triangle and even prevent to identify the water pocket.

(a) Source depth: 15 m (b) Source depth: 95 m (c) Source depth: 355 m

(d) Source depth: 15 m (e) Source depth: 175 m (f) Source depth: 355 m

(g) Source depth: 15 m (h) Source depth: 175 m (i) Source depth: 355 m

Figure 5.20: Absolute Field of S1 (a-c), S3 (d-f) and S5 (g-i) with a single transmitter at different
source depths, no receivers and run at a single frequency of f = 500 MHz. The amp-
litude is in arbitrary units. The wave-like character is noticeable from the lighter and
darker areas in the pattern especially near the boundary layers where the refraction and
reflection occur. The triangular water pocket, which absorbs the waves to a great extent,
is displayed differently by the diffraction: it casts shadows differently depending on the
source depth. Similar arguments from the optics are made with the circular meteoric
rocks. The water pocket is shifted to 150 m in (a-c).
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5.4 Results for the Large-Scale Simulation

The absolute field at f = 500 MHz with a single transmitter and no receivers of S3 and S4 are shown
in Figure 5.21 & 5.22. The additional sintered snow layer that due to its lower porosity has a higher
conductivity and attenuation constant, has a clear effect on the absorption at the boundary layers.

Figure 5.21: Absolute field of S3 at a source depth of 200 m. Above the pure ice layer there is a
layer of unconsolidated geyser deposits (conductive snow) that absorbs and attenuates
the radio waves.

Figure 5.22: Absolute field of S4 at a source depth of 200 m. Above the pure water ice layer there is
a layer of sintered geyser deposits (sintered snow) and a layer of unconsolidated geyser
deposits (conductive snow). Both surface ice layers have a thickness of 12.5 m. In
contrast to Fig. 5.21 the radio waves are more absorbed due to the higher conductivity
of the sintered snow layer, which can be seen in the top left corner region of the color
map.
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5 Radio Wave Simulation in a Realistic Scenario on Enceladus

5.5 Discussion

The previous results show that borehole ground penetrating radar methods provide numerous oppor-
tunities in order to describe radio wave propagation in a subsurface environment of a body with a
multiple-layer simulation geometry.

Benefits

• A-Scans reproduce reflection spectra correctly in the time domain

• B-Scans enable to distinguish different reflections from each other and can assign them to the
corresponding scattering layer

• With the aid of simplistic geometry considerations the depth of a flat scattering target could have
been derived within a 5 % error limit.

Problems and Enhancements

• For more complex targets the assumptions made here are not sufficient and more elaborated math-
ematical and physical considerations like boundary conditions have to be incorporated

• The crosshole GPR B-Scan was not able to show the triangular water pocket. The code must be
extended with regard to non-flat boundary layers

• The code has errors regarding refractive index and time axis

• The PE-method applied here allows slightly varying refractive indices in an otherwise homogeneous
medium. These has an impact on the reflection signals
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6
Conclusion and Outlook

This thesis aimed to apply a new simulation method, the Parabolic Equation, an approximation of
Maxwell’s equations solution, in order to describe radio wave propagation through different homogeneous
dielectric media with multiple boundary layers and scattering problems. To that end, based on sufficiently
precise assumptions, chemical models and measurement data from Cassini space probe, approximately
realistic dielectric properties of the surface and subsurface ice of the Saturnian moon Enceladus like
permittivity, conductivity and attenuation could have been derived. In comparison with FDTD-methods,
which solve Maxwell’s equations directly without any approximations, but are more commonly used, PE-
methods are computationally more efficient, even if not being as accurate in the nano-scale.

Within the scope of this work, appplication purposes comprise the calculation of distances to obstacles
like circular meteoric rocks that a melting probe would encounter when drilling through the ice during
a space mission to Enceladus, and a water-bearing crevasse, assumed to be flat or triangular here, in
differently complex simulation domains. The main tool is to look at the time-of-flight (TOF) of both
the direct transmitted signals and the signals reflected from the boundary layers. Concerning this,
the methodology includes creating Gaussian pulses emitted by transmitting antennas (TX), which are
decomposed in its frequency constituents by Fourier transform and then recomposed in their original
states again after being sampled at receiving antennas (RX). After that, so-called A-Scans that represent
the received pulse in the time-domain at each TX depth and RX range, and B-Scans that combine
multiple A-Scans across the whole depth range, can be created. This works according to the principle
of the Borehole Ground-Penetrating Radar, where TX and RX are lowered down in parallel, that is, at
the same depth. The distance calculation was successfully performed. By using a single-layer geometry,
the simulation provides a depth that deviates only 2.48 % from the true value. However, this research
raises the question of multiple-layer scattering and irregular shapes of objects embedded in the ice, so
that statements with regard to the shape and the location of the objects could only have been made
qualitatively instead of quantitatively. The A-Scans reveal important information about attenuation
and higher-order reflections, while the B-Scans disclose the inaccuracy of the PE-method designed for
domains with slightly and strongly changing refractive index such as terrestrial glaciers.

Based on these conclusions, future research should consider the polarization of the electric field and
boundary conditions of electromagnetic waves incident on more complex geometries. The simulations
were made assuming a flat surface geometry and flat boundary layers. More accurate simulations would
include an uneven surface using topography data of Enceladus and require an update of the code with
regard to the PE (for example see the chapter PE and Terrain Modeling in Apaydin and Sevgi (2017)).
Due to the overestimation of the TOF, the code should be corrected with regard to this error.
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A
Simulation Results

Table A.1: Calculated water pocket depths in a range of 2 to 50 m depth in increments of 2 m.

d [m] dWaterPocket [m]
2 49.72
4 49.85
6 49.93
8 50.05
10 50.13
12 50.24
14 50.34
16 50.44
18 50.57
20 50.64
22 50.75
24 50.85
26 51.36
28 51.46
30 51.59
32 51.33
34 51.52
36 51.66
38 52.17
40 52.42
42 52.74
44 52.80
46 53.41
48 54.43
50 56.05
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B
Conductivity of Enceladean Surface Ice and Subsurface

Salt Water Ocean

It is likely that a subglacial, salty ocean also exists on Jupiter’s moon Europa. Moore (2000) proposes
models of radar absorption in Europan ice that could be purposeful in order to detect the ocean by an
orbiting radar sounder. The attenuation of the electromagnetic waves depends on the ice-chemistry, for
which some geochemical models are given in this paper that take into account temperature variation
with depth in a certain frequency range. Walker et al. (2010) present an equivalent approach to the
same problem on Enceladus. In the following a rough idea of Enceladus’ ice- and water-chemistry will
be discussed whence dielectric properties like refraction, conduction and attenuation will be derived.

Conductivity of Enceladean Ice

In this section, the main dielectric parameters of Enceladean snow-like granular surface ice will be de-
rived, based on the assumption that it is mainly contaminated with sodium compounds.

The molar concentration (molarity) of ionic sodium (N+) is given by:

c = nNa+

V
= NNa+

NA · V
(B.1)

where NA is the Avogadro constant and V is the volume of an ice grain assumed to be spherical in shape:

V = 4
3πR

3
g (B.2)

with a radius of Rg ' 150 µm (cf. 2.2 and Brown et al. (2006)). In order to find the number of sodium
particles, first calculate the number of water molecules by their mass

mw = ρw · V = ρw ·
4
3 · πR

3
g = 920 kg

m3 ·
4
3π · (150 · 10−6 m)3 = 1.300 · 10−8 kg (B.3)

The number of water molecules can be calculated through the molar mass of water:

NH2O = 3.083 · 10−14 kg
18u = 4.353 · 1017 (B.4)
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B Conductivity of Enceladean Surface Ice and Subsurface Salt Water Ocean

Since NNa+
NH2O

' 10−3 for sodium-rich Type-III particles that predominantly contain NaCl and Na2CO3

and/or NaHCO3 (cf. chapter 2.2), it is:

NNa+ = 4.353 · 1015 (B.5)

Insertion yields the following concentration of sodium in the ice grain:

cNa+ = 4.353 · 1015

6.022 · 1023 mol−1 · 4
3π · (150 · 10−6 m)3 = 51.14 mol

m3 = 0.051 mol
l = 5.114 · 104µM (B.6)

The electric conductivity Λ of the impure ice can be calculated through the molarity and molar con-
ductivity of sodium (βNa+ ∼ 1.5 µS

µM ). It will be looked at the high-frequency limit of σ:

σEnc, snow∞ ' σ∞,pure ice + βNa+ · cNa+ +
∑
i

βici︸ ︷︷ ︸
other impurities, negligible

(B.7)

Snow

Further, the molar conductivity depends on the volume filling factor v, which is given by the porosity
p = 1− v of the ice considered. A first approach states a v3-dependency of the molar conductivity. An
even better approximation is given by the Looyenga-model:

β(v) ' β(1) · v · (0.68 + 0.32v)2 (B.8)

or a general power law
β(v) = β(1) · (v − vc)t (B.9)

where vc equals to a threshold volume fraction below no conduction can take place and t is dependent
on the lattice structure of the impure ice and is often found to be between 2.5 and 3 but can merely
be determined by experimental models (not applicable here). The porosity of Enceladean surface ice is
known to be p = 0.9− 0.95⇐⇒ v = 0.05− 0.1 (Buratti et al., 2014). Finally, the following equation for
the conductivity of sodium-doped Enceladean ice holds:

σ∞ ' σ∞,Looyenga = σ∞ pure(1)v(0.68 + 0.32v)2︸ ︷︷ ︸
=0.456µSm−1

+βNa+(1)v(0.68 + 0.32v)2︸ ︷︷ ︸
=0.076µSm−1

µM

· [Na+]︸ ︷︷ ︸
=5.114·104µM

∣∣∣∣
v=0.1

(B.10)

Insertion of all parameters yields:

σEnc, snow∞ = 3889.127µSm−1 = 3.889 · 103 µSm−1 (B.11)

The attenuation constant is given by the following expression (Evans, 1965):

α = 0.129
√
εrf ·

[√
(1 + tan2 δ)− 1

]− 1
2

(B.12)
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respectively, if tan δ � 1 as it is for low loss materials such as most ice at radar sounding frequencies
(Moore, 2000), then the attenuation constant can be rewritten as:

α = 0.0009 · σ dB
m (B.13)

where σ is in µSm−1. The attenuation caused by sodium-bearing ice is therefore given by;

αNa+ = 9 · 10−4 · 3889.127 Sm−1 = 3.500 dB
m (B.14)

The imaginary part of the dielectric constant can be calculated by the electric conductivity:

ε′′(ω) = σ

ε0ω
= σ

2πε0f
= 3889.127 · 10−6 Sm−1

2π · 8.85 · 10−12 As
Vm · 500MHz

= 0.139 (B.15)

Analogously, one can calculate the conductivity contribution of sodium-poor Type-I particles. Since
Na+

H2O = 10−8− 10−5 (Postberg et al., 2009), a lower and an upper bound can be specified for the number
of sodium particles:

1.032 · 104 < NType-I
Na+ < 1.032 · 107 (B.16)

and then for the molar concentration:

0.511µM < cNa
+

Type-I < 511µM (B.17)

Finally, it can be seen that the HF-conductivity contribution of Type-I particles, which is given by

σType-I∞ =

0.456µSm−1, if Na+

H2O = 10−8

0.493µSm−1, if Na+

H2O = 10−5
(B.18)

approaches that of pure ice for the lower bound and is only minimally larger for the upper estimation of
NNa+ . It will therefore be neglected and for that reason, in the following it will be assumed that near
a geyser-active fracture of a Tiger Stripe there will exclusively sediment sodium-rich Type-III particles
back to surface, stratifying it in a conductive snow-like layer.

Sintered Snow

Sintered snow on Enceladus probably has a volume filling factor of v = 0.4. This corresponds to a
porosity of 60 %. Therefore, the conductivity and the attenuation slightly change:

σEnc, sint.∞ = 20034.829µSm−1 = 20.035 · 103 µSm−1 (B.19)

α = 18.031dB
m (B.20)

and the imaginary part of the permittivity at f = 500 MHz is:

ε′′ = 0.721 (B.21)
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B Conductivity of Enceladean Surface Ice and Subsurface Salt Water Ocean

Conductivity of Enceladus’ Salt Water Ocean

A transmitted signal faces more attenuation as the conductivity, which changes with physical parameters
like salinity, increases. Sea water on Earth has a high conductivity (∼ 4 Sm−1) in contrast with pure
water (∼ 0.005− 0.01 Sm−1) (Karagianni, 2015). For all Debye parameters in the Debye model (cf. Eq.
3.72) linear interpolation functions can be deduced:

εs(T, S) = a1(T ) + S · a2(T ) (B.22a)

τ(T, S) = b1(T ) + S · b2(T ) (B.22b)

σ(T, S) = c1(T ) + S · c2(T ) (B.22c)

ε∞(T ) = 6.4587 +O(T ) (B.22d)

where a1, a2, b1, b2, c1 and c2 are polynomial functions up to the 6-th order and can be looked up in
Ellison et al. (1998). Further, Matson et al. (2012) estimates a relatively warm ocean temperature of
∼ 0◦C, two degrees above the freezing temperature of saline water. Insertion of this temperature and a
lower and an upper bound of the salinity yields the following parameters:

σ(T = 0◦C, S = 10/30 ppt) =

0.861 Sm−1, if S = 10ppt

2.409 Sm−1, if S = 30ppt
(B.23)

All terms except for the constants can be neglected since T = 0◦C. The relaxation time is

τ(T = 0◦C, S = 10/30 ppt) =

17.303 + 10 g
kg · (−6.72 · 10−3) = 17.240 [ps], if S = 10 ppt

17.303 + 30 g
kg · (−6.72 · 10−3) = 17.101 [ps], if S = 30 ppt

(B.24)
and is lower with respect to the relaxation time of fresh water, i.e. the doped water molecules respond
more quickly to an external field. The static permittivity holds:

εs(T = 0◦C, S = 10/30 ppt) =

81.820 + 10 g
kg · 0.12544 = 83.074, if S = 10 ppt

81.820 + 30 g
kg · 0.12544 = 85.583, if S = 30 ppt

(B.25)

and the high-frequency value which is independent on salinity is ε∞ = 6.4587. Insertion of all values in
Equation 3.72 yields for the real and imaginary part of the complex permittivity:

ε′(f = 500 MHz, T = 0◦C, S = 10/30 ppt) =

82.850, if S = 10 ppt

85.355, if S = 30 ppt
(B.26)

ε′′(f = 500 MHz, T = 0◦C, S = 10/30 ppt) =

35.105, if S = 10 ppt

90.884, if S = 30 ppt
(B.27)
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Temperature Profile of the Ice Crust on Enceladus

It has been shown that the temperature-dependency of the conductivity can be expressed as a series of
Arrhenius-functions dependent on the conduction contribution Ci, activation energy Ei and a reference
temperature Tr = 251 K (Moore, 2000)

σ(T ) =
∑
i

Ci exp
[
Ei
kB
·
( 1
T
− 1
Tr

)]
(B.28)

and a model for the temperature profile as a function of depth from the surface for icy moons like Europa
and Enceladus was given by Chyba et al. (1998). According to this model, it is:

T (z) = Ts · exp z
h

(B.29)

Figure B.1: Temperature profile model of
Enceladus’ ice crust

where Ts is the surface temperature at z = 0 and h = b
lnTb/Ts

where b is the ice thickness and Tb is the temperature at the
ice base. The surface temperature at the SPT is rougly 80 K
and the temperature at the ice-ocean interface is approxim-
ately 270 K. The ice thickness is assumed to be b = 10 km.
The simulation geometry will be within a range of 0 up to
500 m depth and therefore:

T(500 m) = 85.06 K (B.30)

which is an increase of roughly 5.1 K (cf. Fig. B.1) and will
not be considered to be significant.
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C
Simulation Environment

Landing directly at a cryovolcano might be to risky. For an optimal landing position, a certain safety
distance and a relatively flat topographical environment must therefore be ensured, and the thickness of
the snow layer must also be appropriately chosen.

Figure C.1: Snow thickness and 2D topography map of the Damascus Sulcus Tiger Stripe. Sources:
Friend and Kyriacou (2021) & Abramov et al. (2015)

In Figure C.1 the snow thickness and a two-dimensional topography map of the Damascus Sulcus Tiger
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Stripe region1 is shown. In order to find an adequate lander position, an interpolation through the
topography data was performed and afterwards the flattest environment was found by looking at the
minimum of the gradient with np.gradient from the numpy-library. The result was found at roughly 825
m away from the fracture (blue vertical line in Fig. C.1). The snow thickness in this environment, which
extends over 1000 metres as in the simulation, is 24.81 m on average. On this basis, a snow thickness
of 25 m is selected in the simulation. In the simulation geometries the snow thickness is maintained
constant at this value. The snow thickness data Friend and Kyriacou (2021) is based on a model of the
geyser particle deposition rate data (cf. Fig. C.2)

Figure C.2: Cumulative plume particle deposition on Enceladus’ surface in mm/year for the eight
sources proposed in Spitale and Porco (2007), particle sizes 0.6 to 15 µm (Southworth
et al., 2018).

1https://drive.google.com/drive/u/0/folders/1tqnIHeWyr8C-E_-bclRyTfmoJqCo3fBg, Last retrieved: 09-20-2021
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D
Codes

paraPropPython.py

1 # paraPropPython
2 # c. sbrocco , s. prohira
3

4 import util
5 import numpy as np
6 import time
7 import datetime
8 from permittivity import *
9

10 class receiver :
11 """
12 Parameters
13 ----------
14 x : float
15 x position (m)
16 z : float
17 z position (m)
18 """
19 def __init__ (self , x, z):
20 self.x = x
21 self.z = z
22

23 def setup(self , freq , dt):
24 """
25 further setup of receiver using simulation parameters
26

27 Parameters
28 ----------
29 freq : float array
30 frequencies (GHz)
31 dt : float
32 time step (ns)
33 """
34 self.freq = freq
35 self. spectrum = np.zeros(len(freq), dtype=’complex ’)
36 self.time = np. arange (0, dt*len(freq), dt)
37

38 def add_spectrum_component (self , f, A):
39 """
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40 adds the contribution of a frequency to the received signal spectrum
41

42 Parameters
43 ----------
44 f : float
45 corresponding frequencie (GHz)
46 A : complex float
47 complex amplitude of received siganl (V/m???)
48 """
49 i = util. findNearest (self.freq , f)
50 self. spectrum [i] = A
51

52 def get_spectrum (self):
53 """
54 gets received signal spectrum
55

56 Returns
57 -------
58 1-d comlplex float array
59 """
60 return self. spectrum [: int(len(self.freq)/2)]
61

62 def get_signal (self):
63 """
64 gets received signal
65

66 Returns
67 -------
68 1-d comlplex float array
69 """
70 return np.flip(util. doIFFT (self. spectrum ))
71

72 def get_frequency (self):
73 """
74 gets frequency array
75

76 Returns
77 -------
78 1-d float array
79 """
80 return abs(self.freq)[: int(len(self.freq)/2)]
81

82 def get_time (self):
83 """
84 gets time array
85

86 Returns
87 -------
88 1-d float array
89 """
90 return self.time
91
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D Codes

92

93

94 class paraProp :
95 """
96 Parameters
97 ----------
98 iceLength : float
99 length of the simulation (m)

100 iceDepth : float
101 depth of the ice simulated (m)
102 dx : float
103 grid spacing in the x direction (m)
104 dz : float
105 grid spacing in the z direction (m)
106 airHeight : float
107 amount of air to be simulated above ice (m). Initialized to 25 m
108 filterDepth : float
109 size of the filtered reason above and below simulated region (m). Initialized

to 100 m
110 refDepth : float
111 reference depth for simulation (m). Initialized to 1 m below surface
112 """
113 def __init__ (self , iceLength , iceDepth , dx , dz , airHeight =25, filterDepth =100 ,

refDepth =1):
114 ### spatial parameters ###
115 # x #
116 self.x = np. arange (0, iceLength +dx , dx)
117 self.xNum = len(self.x)
118 self.dx = dx
119

120 # z #
121 self. iceLength = iceLength
122 self. refDepth = refDepth
123 self. iceDepth = iceDepth
124 self. airHeight = airHeight
125 self.z = np. arange (-airHeight , iceDepth + dz , dz)
126 self.zFull = np. arange (-( airHeight + filterDepth ), iceDepth + filterDepth + dz ,

dz)
127 self.zNum = len(self.z)
128 self. zNumFull = len(self.zFull)
129 self.dz = dz
130 self. refDepth = refDepth
131

132 ### other simulation variables ###
133 # filter information #
134 self. filterDepth = filterDepth
135 self.fNum = int( filterDepth / dz)
136 win = np. blackman (2* self.fNum)
137 filt = np.ones(self. zNumFull )
138 filt [: self.fNum] = win [: self.fNum]
139 filt[-self.fNum :] = win[self.fNum :]
140 self.filt = filt
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141

142 # z wavenumber #
143 self.kz = np.zeros(self. zNumFull )
144 self.kz[: int(self. zNumFull /2)] = np. linspace (0, np.pi/self.dz , int(self.

zNumFull /2))
145 self.kz[-int(self. zNumFull /2) :] = np. linspace (-np.pi/self.dz , 0, int(self.

zNumFull /2))
146

147 # index of refraction array #
148 self.n = np.ones(self.zNumFull , dtype=’complex ’)
149

150 #2D Refractive Index Profile - Added by Alex Kyriacou
151 self.n2 = (1 + 1j) * np.zeros (( self.xNum , self. zNumFull ))
152

153 # source array #
154 self. source = np.zeros(self.zNumFull , dtype=’complex ’)
155

156 # 2d field array #
157 self.field = np.zeros (( self.xNum , self.zNum), dtype=’complex ’)
158

159 def get_x(self):
160 """
161 gets x grid of simulation
162

163 Returns
164 -------
165 1-d float array
166 """
167 return self.x
168

169 def get_z(self):
170 """
171 gets z grid of simulation
172

173 Returns
174 -------
175 1-d float array
176 """
177 return self.z
178

179

180 ### ice profile functions ###
181 def set_n(self , method , nVec=None , nFunc=None , nAir =1.0003) :
182 """
183 set the index of refraction profile of the simualtion
184

185 future implementation plans:
186 - 2-d profiles
187 - complex index of refraction
188

189 Parameters
190 ----------
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D Codes

191 method : string
192 ’vector ’ for vector defined profile
193 ’func ’ for function defined profile
194 nVec : array
195 if method ==’ vector ’, defines the index of refraction profile of ice as an

array
196 Precondition : spacing between elements is dz
197 Postcondition : n(z=0) = nVec [0], n(z=dz) = nVec [1], ... , n(z>= len(nVec)*dz

) = nVec [-1]
198 nFunc : function
199 if method ==’ func ’, defines the index of refraction profile of ice as a

function
200 Precondition : nFunc is a function of one variable , z, and returns a float

value
201 Postcondition : n(z >=0) = nFunc(z)
202 nAir : float
203 index of refraction of air
204 Postcondition : n(z <0) = nAir
205 """
206 self.n = np.ones(self.zNumFull , dtype=’complex ’)
207

208 ### vector method ###
209 if method == ’vector ’:
210 nNum = len(nVec)
211 j = 0
212 for i in range(self. zNumFull ):
213 if self.zFull[i] >= 0:
214 if j < nNum:
215 self.n[i] = nVec[j]
216 else:
217 self.n[i] = nVec [-1]
218 j += 1
219 else:
220 self.n[i] = nAir
221

222 ### functional method ###
223 if method == ’func ’:
224 for i in range(self. zNumFull ):
225 if self.zFull[i] >= 0:
226 if self.zFull [i] <= self. iceDepth :
227 self.n[i] = nFunc(self.zFull[i])
228 else:
229 self.n[i] = nFunc(self. iceDepth )
230 else:
231 self.n[i] = nAir
232

233 ### set reference index of refraction ###
234 self.n0 = self. at_depth (self.n, self. refDepth )
235

236 def get_n(self):
237 """
238 gets index of refraction profile of simulation
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239

240 Returns
241 -------
242 1-d float array
243 """
244 return self.n[self.fNum:-self.fNum]
245

246 #Add 2D Refractive Index Profile -> Alex Kyriacou
247 def set_n2 (self , method , nMat=None , nFunc=None , nAir =1.0003) :
248 """
249 set the index of refraction profile of the simualtion
250

251 future implementation plans:
252 - 2-d profiles
253 - complex index of refraction
254

255 Parameters
256 ----------
257 method : string
258 ’vector ’ for vector defined profile
259 ’func ’ for function defined profile
260 nVec : array
261 if method ==’ vector ’, defines the index of refraction

profile of ice as an array
262 Precondition : spacing between elements is dz
263 Postcondition : n(z=0) = nVec [0], n(z=dz) = nVec [1], ... , n

(z>= len(nVec)*dz) = nVec [-1]
264 nMat : Array
265 if method == ’matrix ’ defines a matrix containing the

complex index of refracting profile of ice
266 nFunc : function
267 if method ==’ func ’, defines the index of refraction profile

of ice as a function
268 Precondition : nFunc is a function of one variable , z, and

returns a float value
269 Postcondition : n(z >=0) = nFunc(z)
270 nAir : float
271 index of refraction of air
272 Postcondition : n(z <0) = nAir
273 """
274 # self.n2 = np.ones (( self.xNum , self. zNumFull ), dtype=’ complex ’)
275 self.n2 = 1 + 1j * np.zeros (( self.xNum , self. zNumFull ))
276 ### vector method ###
277 if method == ’matrix ’:
278 for i in range(self. zNumFull ):
279 self.n2[i, :] = nMat[i, :] # Note that the vector will have to include

the air surface as well
280

281 ### functional method ###
282 if method == ’func ’:
283 for i in range(self.xNum):
284 for j in range(self. zNumFull ):
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285 self.n2[i, j] = nFunc(self.x[i], self.zFull[j])
286

287 ### set reference index of refraction ###
288 self.n0 = self. at_depth (self.n, self. refDepth )
289 # self.n0 = self.at(self.n2 , self.refDepth , self. refRange )
290

291 def get_n2 (self):
292 """
293 gets index of refraction profile of simulation
294

295 Returns
296 -------
297 1-d float array
298 """
299 return self.n2
300

301 ### source functions ###
302 def set_user_source_profile (self , method , z0=0, sVec=None , sFunc=None):
303 """
304 set the spatial source profile explicitly (no frequency / signal information )
305 Precondition : index of refraction profile is already set
306

307 Parameters
308 ----------
309 method : string
310 ’vector ’ for vector defined profile
311 ’func ’ for function defined profile
312 z0 : float
313 Precondition : z0 >=0
314 reference starting point for sVec (m). Initialized to 0 m
315 sVec : array
316 if method ==’ vector ’, defines the source profile as an array
317 Precondition : spacing between elements is dz
318 Postcondition : E(z=z0) = sVec [0], E(z=z0+dz) = sVec [1], ... , E(z>=z0+len(

sVec)*dz) = sVec [-1], TODO
319 sFunc : function
320 if method ==’ func ’, defines the source profile as a function
321 Precondition : sFunc is a function of one variable , z, and returns a float

value
322 Postcondition : E(z >=0) = sFunc(z)
323 """
324 self. source = np.zeros(self.zNumFull , dtype=’complex ’)
325

326 ### vector method ###
327 if method == ’vector ’:
328 sNum = len(sVec)
329 j = 0
330 for i in range(self. zNumFull ):
331 if self.zFull[i] >= z0:
332 if j < sNum:
333 self. source [i] = sVec[j]
334 else:
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335 self. source [i] = 0
336 j += 1
337 else:
338 self. source [i] = 0
339

340 ### functional method ###
341 if method == ’func ’:
342 for i in range(self. zNumFull ):
343 if self.zFull[i] >= 0:
344 self. source [i] = sFunc(self.zFull[i])
345 else:
346 self. source [i] = 0
347

348 def set_dipole_source_profile (self , centerFreq , depth , A=1+0.j):
349 """
350 set the source profile to be a half -wave dipole sized to center frequency
351 Precondition : index of refraction profile is already set
352

353 Parameters
354 ----------
355 centerFreq : float
356 center frequency of to model dipole around (GHz)
357 depth : float
358 Precondition : depth >=0
359 depth of middle point of dipole (m)
360 A : complex float
361 complex amplitude of dipole . Initialized to 1 + 0j
362 """
363 ### frequency and wavelength in freespace ###
364 self. source = np.zeros(self.zNumFull , dtype=’complex ’)
365 centerLmbda = util. c_light / centerFreq
366

367 ### wavelength at reference depth ###
368 centerLmbda0 = centerLmbda /self.n0
369

370 ### create dipole ###
371 z0 = depth
372 z0Index = util. findNearest (self.zFull , z0)
373

374 nPoints = int (( centerLmbda0 /2) / self.dz)
375 ZR1 = np. linspace (0,1, nPoints , dtype=’complex ’)
376 ZR2 = np. linspace (1,0, nPoints , dtype=’complex ’)
377 zRange = np. append (ZR1 , ZR2)
378

379 n_x = np.pi* zRange
380 e = [0., 0., 1.]
381 beam = np.zeros(len(n_x), dtype=’complex ’)
382 f0 = np.zeros(len(n_x), dtype=’complex ’)
383

384 for i in range(len(n_x)):
385 n=[ n_x[i], 0, 0]
386 val = np.cross(np.cross(n,e),n)[2]
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387 beam[i] = complex (val , val)
388 f0 = A*( beam /(np.max(beam)))
389

390 self. source [z0Index - nPoints +1: z0Index + nPoints +1]= f0
391

392 def get_source_profile (self):
393 """
394 gets source profile of simulation
395

396 Returns
397 -------
398 1-d comlplex float array
399 """
400 return self. source [self.fNum:-self.fNum]
401

402

403 ### signal functions ###
404 def set_cw_source_signal (self , freq , amplitude = 1+0j):
405 """
406 set a continuous wave signal at a specified frequency
407

408 Parameters
409 ----------
410 freq : float
411 frequency of source (GHz)
412 """
413 ### frequency ###
414 self.freq = np.array ([ freq], dtype=’complex ’)
415 self. freqNum = len(self.freq)
416

417 ### wavenumber at reference depth ###
418 self.k0 = 2.* np.pi*self.freq*self.n0/util. c_light
419

420 ### coefficient ###
421 self.A = np.array ([ amplitude ], dtype=’complex ’)
422

423 def set_td_source_signal (self , sigVec , dt):
424 ### save input ###
425 self.dt = dt
426 self. sigVec = sigVec
427

428 ### frequencies ###
429 df = 1/( len( sigVec )*dt)
430 self.freq = np. arange (0, 1/dt , df , dtype=’complex ’) #TODO -> Why do they

structure it like this ?? why isn ’t the frequnecy space from -nyquist to + nyquist ??
431 self. freqNum = len(self.freq)
432

433 ### wavenumbers at reference depth ###
434 self.k0 = 2.* np.pi*self.freq*self.n0/util. c_light
435

436 ### coefficient ###
437 self.A = util.doFFT(np.flip( sigVec ))
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438

439 # to ignore the DC component #
440 self.A[0] = self.k0 [0] = 0
441

442

443 def get_spectrum (self):
444 """
445 gets transmitted signal spectrum
446

447 Returns
448 -------
449 1-d comlplex float array
450 """
451 return self.A[: int(self. freqNum /2)]
452

453 def get_frequency (self):
454 """
455 gets frequency array
456

457 Returns
458 -------
459 1-d float array
460 """
461 return abs(self.freq)[: int(self. freqNum /2)]
462

463 def get_signal (self):
464 """
465 gets transmitted signal
466

467 Returns
468 -------
469 1-d comlplex float array
470 """
471 return self. sigVec
472

473 def get_time (self):
474 """
475 gets time array
476

477 Returns
478 -------
479 1-d float array
480 """
481 return np. arange (0, self.dt*len(self. sigVec ), self.dt)
482

483

484 ### field functions ###
485 def do_solver (self , rxList =np.array ([])):
486 """
487 calculates field at points in the simulation
488 Precondition : index of refraction and source profiles are set
489
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490 future implementation plans:
491 - different method options
492 - only store last range step option
493

494 Parameters
495 ----------
496 rxList : array of Receiver objects
497 optional for cw signal simulation
498 required for non cw signal simulation
499 """
500

501 if (self. freqNum != 1):
502 ### check for Receivers ###
503 if (len( rxList ) == 0):
504 print(" Warning : Running time - domain simulation with no receivers . Field

will not be saved.")
505 for rx in rxList :
506 rx.setup(self.freq , self.dt)
507

508 for j in np. arange (0, int(self. freqNum /2)+self. freqNum %2, 1, dtype=’int ’):
509 if (self.freq[j] == 0): continue
510 u = 2 * self.A[j] * self. source * self.filt * self.freq[j] #Set reduced

field u(0, z, f = f_j)
511 self.field [0 ,:] = u[self.fNum:-self.fNum] #Set Field at x=0 psi(x=0, z, f =

f_j)
512

513 ### method II ###
514 alpha = np.exp (1.j * self.dx * self.k0[j] * (np.sqrt (1. - (self.kz **2 /

self.k0[j]**2))- 1.))
515 B = (self.n)**2 -1 #TODO Check if n is real or complex number -> does this

change the maths ??
516 Y = np.sqrt (1.+( self.n/self.n0)**2)
517 beta = np.exp (1.j * self.dx * self.k0[j] * (np.sqrt(B+Y**2) -Y))
518

519 for i in range (1, self.xNum):
520 u = alpha * (util.doFFT(u))
521 u = beta * (util. doIFFT (u))
522 u = self.filt * u
523

524 self.field[i ,:] = u[self.fNum:-self.fNum ]/( np.sqrt(self.dx*i) * np.exp
(-1.j * self.k0[j] * self.dx * i))

525 if (len( rxList ) != 0):
526 for rx in rxList :
527 rx. add_spectrum_component (self.freq[j], self. get_field (x0=rx.x, z0=

rx.z))
528 self.field.fill (0)
529

530 def do_solver2 (self , rxList =np.array ([]) , freq_min = 0, freq_max = 1, nDiv = 1):
531 """
532 calculates field at points in the simulation
533 Precondition : index of refraction and source profiles are set
534
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535 future implementation plans:
536

537 - different method options
538 - only store last range step option
539

540 Parameters
541 ----------
542 rxList : array of Receiver objects
543 optional for cw signal simulation
544 required for non cw signal simulation
545 """
546 idx_min = util. findNearest (freq_min , self.freq)
547 idx_max = util. findNearest (freq_max , self.freq)
548

549 if (self. freqNum != 1):
550 ### check for Receivers ###
551 if (len( rxList ) == 0):
552 print(" Warning : Running time - domain simulation with no receivers . Field

will not be saved.")
553 for rx in rxList :
554 rx.setup(self.freq , self.dt)
555

556 #TODO: Add Sinc Interpolation :
557

558 #for k in range (1, self. freqNum ):
559 for k in range(idx_min , idx_max ):
560 if k % nDiv == 0:
561 tstart_k = time.time ()
562 u = self.A[k] * self. source * self.filt
563 #print(’u shape ’, u.shape)
564

565 self.field [0, :] = u[self.fNum:-self.fNum]
566 # print( u[self.fNum:-self.fNum ]. shape)
567 ### method II ###
568 # print(self.kz)
569

570 ’’’
571 alpha = np.exp (1.j * self.dx * self.k0[k] * (np.sqrt (1. - (self.kz ** 2

/ self.k0[k] ** 2)) - 1.))
572 B = (self.n2) ** 2 - 1
573 Y = np.sqrt (1. + (self.n2 / self.n0) ** 2)
574

575 beta = np.exp (1.j * self.dx * self.k0[k] * (np.sqrt(B + Y ** 2) - Y))
576 ’’’
577 range_times = []
578 for i in range (1, self.xNum):
579 tstart_range = time.time ()
580 nVec = self.n2[i, :]
581 # Added by Alex Kyriacou
582 alpha = np.exp (1.j * self.dx * self.k0[k] * (
583 np.sqrt (1. - (self.kz ** 2 / self.k0[k] ** 2)) - 1.))

# This is a 1D vector
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584 B = nVec ** 2 - 1
585 Y = np.sqrt (1. + (nVec / self.n0) ** 2)
586 beta = np.exp (1.j * self.dx * self.k0[k] * (np.sqrt(B + Y ** 2) - Y

))
587

588 # TODO: Finish correcting this to be 2D -> fix tab
589 # u = alpha[i, :] * (util.doFFT(u))
590 u = alpha * (util.doFFT(u))
591 u = beta * (util. doIFFT (u))
592 u = self.filt * u
593

594 self.field[i, :] = u[self.fNum:-self.fNum] / (
595 np.sqrt(self.dx * i) * np.exp (-1.j * self.k0[k] * self.

dx * i))
596 # print(self.x[i], self. at_depth (self.field[i, :], 40))
597 tend_range = time.time ()
598 range_times . append (tend_range - tstart_range )
599 range_time = np.mean( range_times )
600 if (len( rxList ) != 0):
601 for rx in rxList :
602 rx. add_spectrum_component (self.freq[k], self. get_field (x0=rx.x,

z0=rx.z))
603 # self.field.fill (0) # Deletes Field Afterwards
604 tend_k = time.time ()
605 duration = tend_k - tstart_k
606 print(’Solution complete , time: ’, round(duration , 2), ’s’)
607 print(’Average time per range step: ’, range_time , ’ approximate

solution for freq step: ’, range_time *self.xNum)
608 nRemaining = ( idx_max - k) / nDiv
609 print(’Remaining Iterations ’, nRemaining )
610 remainder = datetime . timedelta ( seconds = nRemaining * duration )
611 print(’Remaining time: ’ + str( remainder ) + ’\n’)
612

613

614 def get_field (self , x0=None , z0=None):
615 """
616 gets field calculated by simulation
617

618 future implementation plans:
619 - interpolation option
620 - specify complex , absolute , real , or imaginary field
621

622 Parameters
623 ----------
624 x0 : float
625 position of interest in x- dimension (m). optional
626 z0 : float
627 position of interest in z- dimension (m). optional
628

629 Returns
630 -------
631 if both x0 and z0 are supplied
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632 complex float
633 if only one of x0 or z0 is supplied
634 1-d complex float array
635 if neither x0 or z0 are supplied
636 2-d complex float array
637 """
638 if (x0!= None and z0!= None):
639 return self.field[util. findNearest (self.x, x0),util. findNearest (self.z,z0)]
640 if (x0!= None and z0== None):
641 return self.field[util. findNearest (self.x, x0) ,:]
642 if (x0== None and z0!= None):
643 return self.field [:, util. findNearest (self.z,z0)]
644 return self.field
645

646

647 ### misc. functions ###
648 def at_depth (self , vec , depth):
649 """
650 find value of vector at specified depth.
651 future implementation plans:
652 - interpolation option
653 - 2D array seraching . paraProp . at_depth () -> paraProp .at()
654

655 Parameters
656 ----------
657 vec : array
658 vector of values
659 Precondition : len(vec) = len(z)
660 depth : float
661 depth of interest (m)
662

663 Returns
664 -------
665 base type of vec
666 """
667 ### error if depth is out of bounds of simulation ###
668 if (depth > self. iceDepth or depth < -self. airHeight ):
669 print("Error: Looking at z- position of out bounds ")
670 return np.NaN
671

672 # find closest index #
673 dIndex = round (( depth + self. filterDepth + self. airHeight ) / self.dz)
674

675 return vec[ dIndex ]
676

677 def backwards_solver (self , rxList = np.array ([]) , freq_min = 0, freq_max = 0, nDiv=
1, R_threshold = 0.1):

678 # Cut over your frequency space
679 # freq_cut = util. cut_xaxis (self.freq , freq_min , freq_max )
680

681 if self. freqNum > 1:
682 idx_min = util. findNearest (freq_min , self.freq)
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683 idx_max = util. findNearest (freq_max , self.freq)
684 else:
685 idx_min = 0
686 idx_max = 1
687 #nFreq = len( freq_cut )
688

689 ### check for Receivers ###
690 if (len( rxList ) == 0):
691 print(" Warning : Running time - domain selfulation with no receivers . Field

will not be saved.")
692 for rx in rxList :
693 rx.setup(self.freq , self.dt)
694

695 for iFreq in range(idx_min , idx_max ):
696 if iFreq % nDiv == 0:
697 tstart_i = time.time () # Start a time for every frequency step
698 freq_i = self.freq[iFreq] # Frequency_i
699

700 print(’solving for: f = ’, freq_i , ’GHz , A = ’, self.A[iFreq], ’step:’,
iFreq - idx_min , ’steps left:’, idx_max - iFreq)

701

702 # Add U_positive field
703 u_plus = 2 * self.A[iFreq] * self. source * self.filt * freq_i # Set

Forward Propogating Field u_plus
704 self.field [0, :] = u_plus [self.fNum:-self.fNum]
705 alpha = np.exp (1.j * self.dx * self.k0[iFreq] * (np.sqrt (1. - (self.kz/

self.k0[iFreq ]) **2) - 1.))
706

707 for jXstep in range (1, self.xNum):
708 n_j = self.n2[jXstep , :] # Verticle referactive index profile at

x_i , n_i(z) = n(x = x_i , z)
709 x_j = self.x[ jXstep ]
710

711 B = n_j ** 2 - 1
712 Y = np.sqrt (1. + (n_j / self.n0) ** 2)
713 beta = np.exp (1.j * self.dx * self.k0[iFreq] * (np.sqrt(B + Y ** 2)

- Y))
714

715 u_plus = alpha * (util.doFFT( u_plus ))
716 u_plus = beta * (util. doIFFT ( u_plus ))
717 u_plus = self.filt * u_plus
718

719 self.field[jXstep , :] = ( u_plus [self.fNum:-self.fNum] / np.sqrt(x_j
)) * np.exp (1.j * self.k0[iFreq] * x_j)

720

721 # Calculate Reflections range -wise
722 dNx = n_j - self.n2[ jXstep - 1, :]
723 reflelction_z = util. reflection_coefficient (n_j , self.n2[ jXstep -

1, :]) # Calculate Reflection coefficient
724

725 if any( reflelction_z ) > R_threshold : #TODO -> Should this be
reflection_z ** 2?
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726 refl_field = np.zeros (( jXstep +1, self.zNum), dtype=’complex ’)
727

728 refl_source = np.zeros(self.zNumFull , dtype=’complex ’)
729 refl_source [self.fNum:-self.fNum] = self.field[jXstep , :] *

reflelction_z [self.fNum:-self.fNum]
730 #Scale forward going reduced field by transmission coefficient

(has to be smaller than last one)
731 u_plus [self.fNum:-self.fNum] *= util. transmission_coefficient (

n_j , self.n2[ jXstep - 1, :])[self.fNum:-self.fNum] #TODO -> field or u_plus ??
732

733 # Create Negative Travelling Reduced Field
734 print(len( refl_source ), len(self.filt) )
735 u_minus = 2 * refl_source * self.filt * self.freq[iFreq]
736 refl_field [jXstep , :] = u_minus [self.fNum:-self.fNum]
737

738 nSteps_backwards = jXstep - 1 # Number of Steps back to origin
x=0

739 mXstep = jXstep - 1 # This indice goes backwards
740

741 alpha_minus = np.exp (1.j * self.dx * self.k0[iFreq] * (np.sqrt
(1. - (self.kz/ self.k0[iFreq ]) **2) - 1.))

742 for kBack in range( nSteps_backwards ):
743 n_k = self.n2[mXstep , :]
744 x_minus = abs(self.x[ mXstep ] - x_j)
745

746 B_minus = n_k ** 2 - 1
747 Y_minus = np.sqrt (1. + (n_k / self.n0) ** 2)
748 beta_minus = np.exp (1.j * self.dx * self.k0[iFreq] * (np.

sqrt( B_minus + Y_minus ** 2) - Y_minus ))
749

750 u_minus = alpha_minus * (util.doFFT( u_minus ))
751 u_minus = beta_minus * (util. doIFFT ( u_minus ))
752 u_minus = self.filt * u_minus
753

754 refl_field [mXstep , :] = ( u_minus [self.fNum:-self.fNum] / np
.sqrt( x_minus )) * np.exp (1j* x_minus *self.k0[iFreq ])

755 mXstep -= 1
756

757 self.field [: jXstep , :] += refl_field [: jXstep , :]#TODO -> Should
I be adding field components or reduced field components ??

758 if len( rxList ) > 0:
759 for rx in rxList :
760 rx. add_spectrum_component (self.freq[iFreq], self. get_field (x0=

rx.x, z0=rx.z))
761 tend_i = time.time ()
762 duration = tend_i - tstart_i
763 print(’Solution complete , time: ’, round(duration ,2) , ’s’)
764 nRemaining = (idx_max -iFreq)/nDiv
765 print(’Remaining Iterations ’, nRemaining )
766 remainder = datetime . timedelta ( seconds = nRemaining * duration )
767 print(’Remaining time: ’ + str( remainder ) + ’\n’)
768
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769 def backwards_solver_2way (self , rxList = np.array ([]) , freq_min = 0, freq_max = 1,
nDiv =1, R_threshold =0.1):

770 #New method for calculating backwards waves using u_minus -> use a 3D array to
hold reflection sources

771 # Cut over your frequency space
772 # freq_cut = util. cut_xaxis (self.freq , freq_min , freq_max )
773 if self. freqNum > 1:
774 idx_min = util. findNearest (freq_min , self.freq)
775 idx_max = util. findNearest (freq_max , self.freq)
776 else:
777 idx_min = 0
778 idx_max = 1
779 # nFreq = len( freq_cut )
780

781 ### check for Receivers ###
782 if (len( rxList ) == 0):
783 print(" Warning : Running time - domain selfulation with no receivers . Field

will not be saved.")
784 for rx in rxList :
785 rx.setup(self.freq , self.dt)
786 for iFreq in range(idx_min , idx_max ):
787 if iFreq % nDiv == 0:
788 tstart_i = time.time () # Start a time for every frequency step
789 freq_i = self.freq[iFreq] # Frequency_i
790

791 print(’solving for: f = ’, freq_i , ’GHz , A = ’, self.A[iFreq], ’step:’,
iFreq - idx_min , ’steps left:’, idx_max - iFreq)

792

793 # Add U_positive field
794 u_plus = 2 * self.A[iFreq] * self. source * self.filt * freq_i # Set

Forward Propogating Field u_plus
795 self.field [0, :] = u_plus [self.fNum:-self.fNum]
796 alpha = np.exp (1.j * self.dx * self.k0[iFreq] * (np.sqrt (1. - (self.kz/

self.k0[iFreq ]) **2) - 1.))
797

798 # Backwards Reflection Source
799 # refl_source_3arr = np.zeros (( self.xNum , self.zNum), dtype=’ complex ’)
800 refl_source_list = [] #list that contains the reflection sources
801 nRefl = 0
802

803 #Solve for u_plus -> from x = 0, x = R
804 time_plus_l = []
805 time_minus_l = []
806 time_xtotal_l = []
807 tstart_i = time.time ()
808 for jXstep in range (1, self.xNum):
809 tstart_xplus = time.time ()
810

811 n_j = self.n2[jXstep , :] # Verticle referactive index profile at
x_i , n_i(z) = n(x = x_i , z)

812 x_j = self.x[ jXstep ]
813
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814 B = n_j ** 2 - 1
815 Y = np.sqrt (1. + (n_j / self.n0) ** 2)
816 beta = np.exp (1.j * self.dx * self.k0[iFreq] * (np.sqrt(B + Y ** 2)

- Y))
817

818 u_plus = alpha * (util.doFFT( u_plus ))
819 u_plus = beta * (util. doIFFT ( u_plus ))
820 u_plus = self.filt * u_plus
821

822 self.field[jXstep , :] = ( u_plus [self.fNum:-self.fNum] / np.sqrt(x_j
)) * np.exp (1.j * self.k0[iFreq] * x_j)

823 tend_xplus = time.time ()
824 time_plus_l . append ( tend_xplus - tstart_xplus )
825

826 # Calculate Reflections range -wise
827 dNx = n_j - self.n2[ jXstep - 1, :]
828 reflelction_z = util. reflection_coefficient (n_j , self.n2[ jXstep -

1 ,:]) # Calculate Reflection coefficient
829

830 if any( reflelction_z ) > R_threshold :
831 nRefl += 1
832 refl_source = np.zeros(self.zNumFull , dtype=’complex ’)
833 refl_source [self.fNum:-self.fNum] = self.field[jXstep , :] *

reflelction_z [self.fNum:-self.fNum]
834

835 refl_field = np.zeros (( self.xNum , self.zNum), dtype=’complex ’)
836 refl_field [jXstep ,:] = refl_source [self.fNum:-self.fNum]
837 refl_source_list . append ( refl_field )
838 # Scale forward going reduced field by transmission coefficient

(has to be smaller than last one)
839 u_plus [self.fNum:-self.fNum] *= util. transmission_coefficient (

n_j , self.n2[ jXstep - 1, :])[self.fNum:-self.fNum] # TODO -> field or u_plus ??
840

841 # Complete forward propagation
842 # Commence backwards propagation
843 if nRefl > 0:
844 refl_source_3arr = np.zeros (( self.xNum , self.zNumFull , nRefl),

dtype=’complex ’)
845 for k in range(nRefl):
846 refl_source_3arr [:, self.fNum:-self.fNum ,k] = refl_source_list [k

]
847

848 mXstep = self.xNum - 1
849 u_minus = np.zeros (( nRefl , self. zNumFull ), dtype=’complex ’)
850 alpha_minus = np.exp (1.j * self.dx * self.k0[iFreq] * (np.sqrt (1. -

(self.kz / self.k0[iFreq ]) ** 2) - 1.))
851 refl_field_3arr = np.zeros (( self.xNum , self.zNum , nRefl))
852

853 print(’zNum ’,self.zNum , ’zNumFull ( including filtered depths ’, self
. zNumFull )

854 for kBack in range (1, self.xNum): #Make j steps backwards
855 tstart_xminus = time.time ()
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856 if refl_source_3arr [kBack ]. any () > 0:
857 filt2 = np.array ([ self.filt ]* nRefl)
858 u_minus [: ,:] += 2 * np. transpose ( refl_source_3arr [mXstep

,: ,:]) * filt2 * self.freq[iFreq]
859

860 n_k = np.array ([ self.n2[mXstep , :]]* nRefl)
861 x_minus = abs(self. iceLength - self.x[ mXstep ])
862

863 B_minus = n_k ** 2 - 1
864 #n0_k = np.array ([ self.n0]* nRefl)
865 Y_minus = np.sqrt (1. + (n_k / self.n0) ** 2)
866 k0_k = np.array ([ self.k0]* nRefl)
867 beta_minus = np.exp (1.j * self.dx * k0_k * (np.sqrt( B_minus +

Y_minus ** 2) - Y_minus ))
868

869 filt_k = np.array ([ self.filt ]* nRefl)
870

871 #TODO: Check if FFT can operate on a 2D array?
872 u_minus = alpha_minus * (util.doFFT( u_minus ))
873 #print( u_minus .shape)
874 u_minus = beta_minus * (util. doIFFT ( u_minus ))
875 #print( u_minus .shape)
876 u_minus = filt_k * u_minus
877 #print( u_minus .shape)
878

879 mXstep -= 1
880 refl_field_3arr [mXstep , :, :] = np. transpose (( u_minus [:, self.

fNum:-self.fNum] / np.sqrt( x_minus )) * np.exp (1j * x_minus * k0_k))
881 tend_xminus = time.time ()
882 time_minus_l . append ( tend_xminus - tstart_xminus )
883 for k in range(nRefl):
884 self.field [: ,:] += refl_field_3arr [:,:,k]
885 tend_i = time.time ()
886 print(’time per pos x step ’, np.mean( time_plus_l ))
887 print(’time per negative x step ’, np.mean( time_minus_l ))
888 print(’simulation per frequency step ’, tend_i - tstart_i , ’time per x

step ( average )’, (tend_i - tstart_i )/self.xNum)
889 if len( rxList ) > 0:
890 for rx in rxList :
891 rx. add_spectrum_component (self.freq[iFreq], self. get_field (x0=

rx.x, z0=rx.z))

Run-Simulation.py

1 #!/ usr/bin/env python
2 # coding : utf -8
3

4 # In [1]:
5

6

7 # paraPropPython example use of paraPropPython .py notebook
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8 # s. prohira , c. sbrocco
9

10 # get_ipython (). run_line_magic (’ matplotlib ’, ’inline ’)
11 import paraPropPython as ppp
12 import numpy as np
13 import matplotlib . pyplot as pl
14 import scipy
15 from scipy import signal
16

17

18 # In [2]:
19

20

21 from paralell_scan import *
22 from pulse import *
23

24

25 # In [3]:
26

27

28 ### an example of defining n as a function of z (also can be done using a vector , see
implementation ) ###

29 def southpole (z):
30 A=1.78
31 B= -0.43
32 C= -0.0132
33 return A+B*np.exp(C*z)
34

35 def enceladus_pole (z, snow_depth = 10, firn_depth = 20, ice_depth = 100):
36 n_ice = 1.82
37 n_firn = np.sqrt (2.2)
38 n_snow = np.sqrt (1.2)
39 n_water = np.sqrt (82.)
40 n0 = 1.0003
41

42 nz = n_water
43 if z < 0:
44 nz = n0
45 elif z >= 0 and z < snow_depth :
46 nz = n_snow
47 elif z >= snow_depth and z < firn_depth :
48 nz = n_firn
49 elif z >= firn_depth and z < ice_depth :
50 nz = n_ice
51 return nz
52

53 def vacuum (z):
54 if z > 0:
55 nz = 1.0003
56 return 1.0003
57

58
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59 def pure_ice (z):
60 epsilon_ice_1 = 3.2
61 epsilon_ice_2 = 1e-5
62 nz = np.sqrt( epsilon_ice_1 + 1j * epsilon_ice_2 )
63 return nz
64

65 def pure_ice_air (z):
66 epsilon_ice_1 = 3.2
67 epsilon_ice_2 = 1e-5
68 n_ice = np.sqrt( epsilon_ice_1 + 1j * epsilon_ice_2 )
69 n_vac = 1
70

71 if z < 0:
72 nz = n_vac
73 elif z >= 0:
74 nz = n_ice
75 return nz
76

77

78 def pure_ice_water_pocket (z, ice_depth_1 =50, water_pocket_depth =150 , ice_depth_2 =200):
79 epsilon_ice_1 = 3.2
80 epsilon_ice_2 = 1e-5
81 epsilon_water_1 = 74
82 epsilon_water_2 = 1.8
83 n_water = np.sqrt (82.)
84 n0 = 1
85 nz = n_water
86 if z < 0:
87 nz = n0
88 elif z >= 0 and z < ice_depth_1 :
89 nz = np.sqrt( epsilon_ice_1 + 1j * epsilon_ice_2 )
90 elif z >= ice_depth_1 and z < water_pocket_depth :
91 nz = np.sqrt( epsilon_water_1 + 1j * epsilon_water_2 )
92 elif z >= water_pocket_depth and z < ice_depth_2 :
93 nz = np.sqrt( epsilon_ice_1 + 1j * epsilon_ice_2 )
94 return nz
95

96 def enceladus_reference (z, snow_depth = 25):
97 epsilon_ice_1 = 3.19
98 epsilon_ice_2 = 1e-5
99 n_ice = np.sqrt( epsilon_ice_1 + 1j * epsilon_ice_2 )

100 epsilon_snow_1 = 1.2
101 epsilon_snow_2 = 0.139
102 n_snow = np.sqrt( epsilon_snow_1 + 1j * epsilon_snow_2 )
103 n0 = 1
104

105

106 if z < 0:
107 nz = n0
108 elif z >= 0 and z < snow_depth :
109 nz = n_snow
110 elif z >= snow_depth :
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111 nz = n_ice
112 return nz
113

114 def enceladus_water_pocket_new (z, snow_depth = 25, ice_depth_1 = 50, water_pocket_depth
= 150, ice_depth_2 = 200):

115 epsilon_ice_1 = 3.19
116 epsilon_ice_2 = 1e-5
117 n_ice = np.sqrt( epsilon_ice_1 + 1j * epsilon_ice_2 )
118 epsilon_snow_1 = 1.2
119 epsilon_snow_2 = 0.139
120 n_snow = np.sqrt( epsilon_snow_1 + 1j * epsilon_snow_2 )
121 epsilon_water_1 = 85.355
122 epsilon_water_2 = 90.884
123 n_water = np.sqrt( epsilon_water_1 + 1j * epsilon_water_2 )
124 n0 = 1
125

126

127 if z < 0:
128 nz = n0
129 elif z >= 0 and z < snow_depth :
130 nz = n_snow
131 elif z >= snow_depth and z < ice_depth_1 :
132 nz = n_ice
133 elif z >= ice_depth_1 and z < water_pocket_depth :
134 nz = n_water
135 elif z >= water_pocket_depth and z < ice_depth_2 :
136 nz = n_ice
137

138 return nz
139

140

141

142

143 def enceladus_water_pocket (z, snow_depth =-20, firn_depth =-10, surface_depth = 0 ,
ice_depth_1 = 50, water_pocket_depth = 150, ice_depth_2 = 200):

144 epsilon_ice_1 = 3.2
145 epsilon_ice_2 = 1e-5
146 epsilon_water_1 = 74
147 epsilon_water_2 = 1.8
148 n_ice = np.sqrt( epsilon_ice_1 + 1j * epsilon_ice_2 )
149 n_water = np.sqrt( epsilon_water_1 + 1j * epsilon_water_2 )
150 n_firn = np.sqrt (2.2)
151 n_snow = np.sqrt (1.2)
152 # epsilon_snow_1 =
153 # epsilon_snow_2 =
154 n_snow = np.sqrt( epsilon_snow_1 + 1j * epsilon_snow_2 )
155 n0 = 1
156 nz = n_water
157

158 if z < snow_depth :
159 nz = n0
160 elif z >= snow_depth and z < firn_depth :
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161 nz = n_snow
162 elif z >= firn_depth and z < surface_depth :
163 nz = n_firn
164 elif z >= surface_depth and z < ice_depth_1 :
165 nz = n_ice
166 elif z >= ice_depth_1 and z < water_pocket_depth :
167 nz = n_water
168 elif z >= water_pocket_depth and z < ice_depth_2 :
169 nz = n_ice
170

171 return nz
172

173 # In [4]:
174

175

176 # pulse_file = path_to_directory + simul_directory + ’pulse_input .npy ’
177 #np.save(pulse_file , pulse_input )
178 ### first , initialize an instance of paraProp by defining its dimensions and frequency

of interest ###
179 from scipy import signal
180

181

182 #sim = ppp. paraProp (iceLength , iceDepth , dx , dz , refDepth = sourceDepth )
183

184

185 frequency_central = 500 e6 # Frequency of Transmitter Pulse
186 t_end = 1000e-9 #Time length of pulse [s]
187 t_start = 0 # starting time
188 t_samples = 1/2 e9 # Sample Interval
189 amplitude0 = 1 #TX Amplitude
190

191 t_pulse = 200e-9 #Time of Pulse centre
192

193

194 tx_pulse = pulse(amplitude0 , frequency_central , t_start , t_end , t_samples ) #Start TX
Pulse object

195

196 # tx_pulse . do_gaussian ( t_pulse ) #Set TX pulse to gaussian pulse
197 tcentral = t_pulse
198 i, q, e = signal . gausspulse ( tx_pulse . time_space - tcentral , fc= tx_pulse .frequency ,

retquad =True , retenv =True)
199 tx_pulse .real = i
200 tx_pulse .imag = q
201 tx_pulse .abs = e
202 tx_pulse . centre = tcentral
203

204 nSamples = tx_pulse . nSamples
205

206 fig = pl. figure ( figsize =(12 ,12) , dpi = 100)
207 ax1 = fig. add_subplot (211)
208 ax2 = fig. add_subplot (212)
209
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210 ax1. set_title (’Pulse (time space)’)
211 ax1.plot( tx_pulse . time_space *1e9 , tx_pulse .real , label=’real ’)
212 ax1.plot( tx_pulse . time_space *1e9 , tx_pulse .imag , label=’imag ’)
213 ax1.plot( tx_pulse . time_space *1e9 , tx_pulse .abs , label=’abs ’)
214

215 ax1. legend ()
216 ax1.grid ()
217 ax1. set_xlabel (’Time [ns]’)
218 ax1. set_ylabel (’Amplitude [V]’)
219

220 ax2. set_title (’Pulse FFT (freq space)’)
221 ax2.plot( tx_pulse . freq_space /1e6 , abs( tx_pulse .doFFT ()), label=’abs ’)
222 ax2.plot( tx_pulse . freq_space /1e6 , tx_pulse .doFFT ().real , label=’real ’)
223 ax2.plot( tx_pulse . freq_space /1e6 , tx_pulse .doFFT ().imag , label=’imag ’)
224 ax2. set_xlabel (’Frequency [MHz]’)
225 ax2. set_ylabel (’Amplitude [V]’)
226

227 ax2.grid ()
228 ax2. legend ()
229 pl.show ()
230

231 # In [5]:
232

233 iceDepth = 150. # m
234 iceLength = 120. # m
235 dx = 1 # m
236 dz = 0.05 # m
237

238 ### it is useful to set the reference depth as the source depth when you only have one
transmitter ###

239 sourceDepth = 50. # m
240 sim = ppp. paraProp (iceLength , iceDepth , dx , dz , refDepth = sourceDepth )
241 z = sim.get_z ()
242 x = sim.get_x ()
243

244 # Define Receiver Positions :
245 max_depth_tx = 50.
246 max_depth_rx = 50.
247 step_interval = 2
248 nDepths_rx = int( max_depth_rx / step_interval ) + 1
249

250 nTransmitters = nDepths_rx
251 sourceDepth_list = np. linspace (0, max_depth_tx , nTransmitters )
252 receiverDepth_list = np. linspace (0, max_depth_rx , nDepths_rx )
253

254 #Range List # Change Range of Receivers
255 Range_list = np.array( [10, 20, 30, 50, 80, 100] )
256 nRanges = len( Range_list )
257

258 rx_array = np.ones (( nDepths_rx , nRanges , 2))
259 rx_list = []
260 for i in range( nDepths_rx ):
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261 for j in range( nRanges ):
262 rx_array [i, j][0] = Range_list [j]
263 rx_array [i, j][1] = receiverDepth_list [i]
264 rx_list . append ([ Range_list [j], receiverDepth_list [i]])
265

266 fig = pl. figure ( figsize =(15 ,8) , dpi = 100)
267 ax1 = fig. add_subplot (121)
268 ax2 = fig. add_subplot (122)
269

270 ax1. set_title (’Transmitter and \n Receiver Positions ’, fontsize =25)
271 ax1. scatter (np.array( rx_list )[:,0], -np.array( rx_list )[:,1], label=’RX’)
272

273 tx_array = np.ones( nTransmitters )
274

275 for i in range( nTransmitters ):
276 tx_array [i] = sourceDepth_list [i]
277 ax1. scatter (np.zeros( nTransmitters ), -tx_array , label=’TX’)
278 ax1. legend ( shadow =True , loc=’upper right ’, fontsize =17)
279 ax1.grid ()
280 ax1. set_ylabel (’z [m]’, fontsize =25)
281 ax1. set_xlabel (’x [m]’, fontsize =25)
282 ax2. set_xlabel (’Refractive Index n’, fontsize =20)
283

284

285 #Load a profile from vector
286 # alpline_profile = np. genfromtxt (’share/alpine -schumman - indOfRef_5cm .dat ’)
287 #sim.set_n(’ vector ’, nVec = alpline_profile [: ,1])
288 #sim.set_n(’func ’, nFunc= enceladus_pole )
289

290 method = ’func ’
291 profile = ’enceladus_water_pocket_new ’
292 sim.set_n(method , nFunc= enceladus_water_pocket_new )
293 ### plot ###
294

295

296 ax2.plot(sim.get_n (), -z, color=’black ’)
297 ax2.grid ()
298 ax2. set_title (’Index of Refraction Profile \n of Simulation ’, fontsize =25)
299 ax2.text (1.2 , 15, ’Vacuum ’ , fontsize = 20, family = ’serif ’)
300 ax2.text (1.5 , -12, ’Impure Snow ’, fontsize = 20, family = ’serif ’)
301 ax2.text (2.2 , -35, ’Pure Ice ’, fontsize = 20, family = ’serif ’)
302 ax2.text (3.9 , -70, ’Saline Water ’, fontsize = 20, family = ’serif ’)
303 ax2. set_ylim (- max_depth_rx - 35, 35)
304 ax1. set_ylim (- max_depth_rx - 5, 13)
305 ax1. tick_params ( labelsize =20)
306 ax2. tick_params ( labelsize =20)
307 plt.show ()
308

309

310 pl.show ()
311

312
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313 sim. set_dipole_source_profile ( frequency_central /1e9 , max_depth_rx /2)
314 sim. set_cw_source_signal ( frequency_central /1e9)
315

316

317 ### run the solver ###
318 sim. do_solver ()
319

320 ### plot absolute value of field for whole simulation space ###
321 fig = pl. figure ( figsize =(15 ,8) , dpi = 100)
322 ax = fig. add_subplot (111)
323

324 pmesh = pl. imshow (np. transpose (abs(sim. get_field ())), aspect =’auto ’, cmap=’hot ’, vmin
=1e-5, vmax =5e-2,

325 extent =(x[0], x[-1], z[-1], z[0]))
326 cbar = pl. colorbar (pmesh)
327 pl.title(" Absolute Field , " + str(int (( frequency_central /1e9) *1000) )+" MHz", fontsize

=25)
328 pl. xlabel ("x (m)", fontsize =25)
329 pl. ylabel ("z (m)", fontsize =25)
330 pl. xticks ( fontsize =20)
331 pl. yticks ( fontsize =20)
332 pl.show ()
333

334

335 # In [6]:
336

337

338 from numpy.lib. format import open_memmap
339

340 def create_memmap (fname , path_to_directory , shape0 , dtype0 = ’float32 ’, mode0 =’w+’): #
Create a Blank Memmap for recording data

341 full_file = path_to_directory + fname
342 A = open_memmap (full_file , dtype=dtype0 , mode=mode0 , shape= shape0 )
343 return A
344

345 def generate_ascan (pulse_tx , tx_array , rx_array , path_to_file , file_name ): # Creates an
Array of Scans for a set of receivers and transmitters

346 nRanges_rx = len( rx_array [0])
347 nDepths_rx = len( rx_array )
348 nDepths_tx = len( tx_array )
349

350 freq_space = pulse_tx . freq_space
351 nFreqs = len( freq_space )
352

353 fft_pulse = np.fft.fft( pulse_tx .real)
354

355 ascan_array = create_memmap (file_name , path_to_file , shape0 = (nFreqs , nDepths_tx ,
nRanges_rx , nDepths_rx ), dtype0 = complex )

356 # full_file = path_to_file + file_name
357 print(nFreqs , nDepths_tx , nDepths_rx , nRanges_rx )
358 # ascan_array = open_memmap (full_file , dtype=complex , mode=’w+’, shape =( nFreqs ,

nDepths_tx , nRanges_rx , nDepths_tx ))
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359

360 for i in range (1, len( freq_space )):
361 print(round(float(i)/len( freq_space )*100 ,2) , ’%, frequency = ’, int( freq_space [

i]/1 e6), ’MHz ’)
362 frequency_i = freq_space [i]
363 amplitude_fft = fft_pulse [i]
364

365 for j in range( nDepths_tx ):
366 #for j in range (1): # Here !!!
367 sourceDepth = tx_array [j]
368 print(’source depth: ’, sourceDepth )
369

370 sim. set_dipole_source_profile (abs( frequency_i ) / 1e9 , sourceDepth ,
fft_pulse [i]) # Set the dipole source

371 sim. set_cw_source_signal (abs( frequency_i ) / 1e9) # Set the frequency
372 sim. do_solver () # Run the simulation
373

374 for k in range( nRanges_rx ):
375 #for k in range (1):
376 for l in range( nDepths_rx ):
377 #for l in range (1):
378

379 RX = rc( rx_array [l,k][0] , rx_array [l,k][1]) #Get Receiver position
(range and depth)

380 print(round(float(i)/len( freq_space )*100 ,2) , ’%’)
381 print(’RX: ’, RX.x, RX.z, ’source depth: ’, sourceDepth , ’frequency

= ’, int( freq_space [i]/1 e6), ’MHz ’)
382

383 signal_rx = sim. get_field (RX.x, RX.z)
384 print( ascan_array .shape)
385 ascan_array [i, j, k, l] = signal_rx
386

387 print(’TX amplitude : ’, 10* np.log10(abs( fft_pulse [i])), ’RX
amplitude : ’, 10* np.log10(abs( signal_rx )))

388 print(’’)
389 #np.save( rx_array )
390 #np.save( tx_array )
391 #np.save( freq_space )
392

393 return ascan_array , tx_array , rx_array
394

395 # In [11]:
396

397 # CREATE THE FOLDER WHERE YOUR SIMULATION TAKES PLACE
398 path_to_file = ’test/’ #You can Rename the folder when you want to make a new

simulation !!
399 if not os.path. exists ( path_to_file ):
400 os.mkdir ( path_to_file )
401

402 # Create the file name containing your received pulses
403 file_name = ’ascan.npy ’
404 full_path = path_to_file + file_name
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405

406 # Create the meta data files
407 np.save( path_to_file + ’freq_space .npy ’, tx_pulse . freq_space ) # Frequencies used in

Simulation
408 np.save( path_to_file + ’time_space .npy ’, tx_pulse . time_space ) #Time space of pulse
409 np.save( path_to_file + ’tx_pulse .npy ’, tx_pulse .real + 1j* tx_pulse .imag) # Transmitter

pulse ( complex )
410 np.save( path_to_file + ’tx_array .npy ’, tx_array ) #Array of Transmitter positions (1D)
411 np.save( path_to_file + ’rx_array .npy ’, rx_array ) #Array of Receiver positions (2D)
412

413 #Save Simulation Data to External File
414 info_file = path_to_file + ’simul_info .txt ’
415 fout = open(info_file , ’w+’)
416

417 fout. write( method + ’\t# method \n’)
418 fout. write( profile + ’\ tnProfile \n’)
419 fout. write(str( frequency_central /1e6) + ’\t#Central -Frequency -MHz\n’)
420 fout. write(str( tx_pulse . nSamples ) + ’\t#Number - Samples \n’)
421 fout. write(str( t_samples ) + ’\t#Sampling -interval -s\n’)
422 nyquist_frequency = 1/(2* t_samples )
423 fout. write(str( nyquist_frequency )+’\t#nyquist -freauency -Hz\n’)
424

425 now = datetime .now ()
426 date_str = now. strftime (’%Y.%m.%d.%H:%M:%S’)
427 fout. write( date_str + ’\t# datetime \n’)
428 fout. close ()
429

430 # In[ ]:
431

432 #Run your simulation -> Results are saved to ’file_name ’ under
433 generate_ascan (tx_pulse , tx_array , rx_array , path_to_file , file_name )
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