
Optimizing the Event Reconstruction of
the Auger Engineering Radio Array for

GPGPU

Vom Fachbereich C, Fachgruppe Physik der
Bergischen Universität Wuppertal zur Erlangung des akademischen Grades

Bachelor of Applied Science vorgelegte Arbeit

von

Marvin Gottowik

Erstprüfer: Prof. Dr. Karl-Heinz Kampert
Zweitprüfer: Prof. Dr. Francesco Knechtli

Contents

1 Introduction 1
1.1 Cosmic Rays and the Pierre Auger Observatory 1
1.2 The Auger Engineering Radio Array 3
1.3 General Purpose Computing on Graphics Processing Units 4

2 The Offline Software Framework 8
2.1 Structure of the Offline Framework . 8
2.2 Radio Event Reconstruction . 9
2.3 Performace Profiling of Offline . 9

3 Fourier Transformations in Offline 12
3.1 Comparison between cuFFT and FFTW 12
3.2 Integration of cuFFT in Offline . 13
3.3 Hilbert Envelope . 16

4 Interpolation of the antenna pattern 21
4.1 Interpolation with texture memory . 21
4.2 Comparison of Single and Double Precision 26

5 Conclusion 27

Appendices 28
A Modulesequence . 28
B FFTW Patch . 29
C Test Systems . 30

References 31

ii

1 Introduction

Ultra high energy cosmic rays (UHECR) are the most energetic particles that have
been observed. Their typical energy is much greater than the particle energy at the
Large Hadron Collider or other particle accelerators. However, there is less than one
particle per year and square kilometer at the highest energy, so huge detectors like the
Pierre Auger Observatory are needed. The major task of the observatory is to find
out, where this high energetic particles come from, and to understand the physical
processes behind the acceleration to such high energies. To reconstruct the energy and
direction of the particle from the detector data the “Offline Software Framework” is
used. The aim of this thesis is to optimize the performance of the event reconstruction.
Especially in high-performance computing graphic cards are used to improve the

performance of an application. This so-called “general purpose computing on graphics
processing units (GPGPU)” can be a lot faster than computing on the CPU for certain
problems and achieves a better performance per watt ratio. Therefore, the leading
systems on the TOP500 list [1] of the most powerful computer systems in the world and
on the Green500 list [2] of most energy-efficient supercomputers are using a combination
of CPUs and GPUs.

In this thesis several performance improvements for the Auger Software Framework
are described. These are achieved by enabling computation of selected intensive tasks
on the GPU while keeping the interface of the modified files intact. This thesis is
structured as follows. In chapter 1, a short introduction to cosmic rays, the Pierre
Auger Observatory, the Auger Engineering Radio Array, and GPGPU is given. The
Offline Software Framework is introduced in chapter 2. Chapter 3 describes several
steps in replacing the FFTW with the cuFFT library and optimizations of the cuFFT
usage. In chapter 4 the antenna pattern interpolation on the GPU with texture memory
will be described. Finally, chapter 5 will summarize the results of this analysis and
present its conclusions.

1.1 Cosmic Rays and the Pierre Auger Observatory
Cosmic rays are particles from outside our solar system with a wide range in energy
and a flux between one particle per square meter and second for low energies to one
particle per square kilometer and year at energies higher than 10EeV. Fundamental
questions like the sources of this ultra high energy cosmic rays and mechanisms for the
acceleration of the particle to such energies are still unclear. Possible candidates are
e.g. the acceleration in shocks in active galactic nuclei and gamma ray bursts [3].
When entering the earth’s atmosphere the cosmic rays will hit an atmospheric

nucleus and create secondary particles which will again interact with other nuclei in

1

1 Introduction

Figure 1.1: Visualization of air showers created by cosmic rays in the earth’s atmosphere
[4].

the atmosphere. This process is shown in figure 1.1. That way a cascade of particles,
called “extensive air shower”, is generated and can be detected on the surface. From
the detected secondary particles direction and energy of the primary particle can be
reconstructed.
Currently, the largest detector array is the Pierre Auger Observatory in Argentina

with an area of 3000 km2, which is larger than the size of the German federal state
Saarland. Different methods are used to detect an extensive air shower.
The “Surface Detector (SD)” [5] consists of water filled tanks which will detect a

passing particle via the emitted Cherenkov radiation. Combining the arrival time of
the shower front from different SD stations the direction of the primary particle can
be reconstructed.
Additionally to the SD, the “Fluorescence Detector (FD)” [6] is used in dark and

clear nights. Extensive air showers create air fluorescence emitted by excited molecules
while moving through the atmosphere. That allows to observe the air shower developing
in the atmosphere and to measure the deposited energy. Using both SD and FD data
for the reconstruction improves the results but the uptime of the fluorescence detectors
is limited, as it operates only in clear and moonless nights.

2

1.2 The Auger Engineering Radio Array

SD Station

AERA Station

HEAT

Coihueco FD Building

Figure 1.2: Photo of a SD station (foreground left), an AERA antenna (foreground right)
and a FD building (background) [9].

1.2 The Auger Engineering Radio Array

In 2010, the Pierre Auger Observatory was extended by the Auger Engineering Radio
Array (AERA) to detect radio signals from air showers. This radiation is emitted
by two different sources. On the one hand electrons and positrons in the shower are
deflected by the magnetic field of the earth. This effect is called geo-magnetic emission
and is the dominant effect [7]. On the other hand there is a negative charge excess in
the shower front due to knocked out electrons from the air molecules and annihilated
positrons in the shower front. AERA measures the radiation in a frequency range of
30-80MHz [8].

Observing the radio emission can provide information about the development of the
air shower as the FD does, but it is not limited to dark and clear nights. An example
of an AERA antenna and a SD Station can be seen in figure 1.2.

3

1 Introduction

Figure 1.3: Development of the theoretical floating point operations per second for CPUs
and GPUs [10].

1.3 General Purpose Computing on Graphics
Processing Units

General purpose computing on graphics processing units means the utilization of
graphic cards to perform computations beyond normal graphic computations. In figure
1.3 the theoretical maximum performance of selected CPUs and GPUs is shown in
floating point operations per second (FLOP/s) as a function of time. Since 2002 GPUs
outperform CPUs and are approximately ten times faster today.

The wide difference can be explained by the structure and functional differences of a
CPU and a GPU. CPUs are constructed for single-threaded code where many different
instructions are performed on the same data set with many branch commands. A
reduction of the execution time can not be achieved by an increasing clock frequency
so other techniques have to be used. Typical examples are reordering instructions for
a better workload of the CPU and caches to reduce time for loading data. In figure
1.4 a schematic view of the components of a CPU and GPU is shown. One can see

4

1.3 General Purpose Computing on Graphics Processing Units

Figure 1.4: Schematic view of a CPU (left) and a GPU (right). Each box represents the
space on the chip used for a specific function indicated by the color [10].

that a CPU owns only a few arithmetic logical units (ALU) which can work totally
independent. Much space on a CPU is spent for cache and controlling units. In contrast
to that, a GPU consists of way more ALUs and only small cache and controlling parts.
The ALUs are grouped in arrays of Streaming Multiprocessors (SM). All cores of a
SM must perform the same instructions but on different data. Therefore data parallel
problems like e.g. a matrix vector multiplication will be much faster on a GPU than
on a CPU.
For programming on the GPU different software packages can be used. The most

important ones are OpenCL [11] and CUDA (Compute Unified Device Architecture)
[10]. OpenCL is a framework that enables parallelism on CPU, GPU and other
processors. CUDA is a parallel computing platform created by NVIDIA and is only
supported by NVIDIA GPUs, but achieves better performance compared to an OpenCL
program on a NVIDIA GPU.
In this thesis only CUDA is used. In CUDA, CPUs are called hosts and GPUs are

called devices. A program can compute on the CPU as usual and use the GPU only
for specific code parts.

CUDA C extends the C/C++ programming language by new keywords and syntax
elements for executing code on a GPU. To illustrate this, a small “single precision
a · ~x + ~y (SAXPY)” code example is shown in listing 1.1 [12]. This code takes two
vectors ~x, ~y and a scalar a and calculates a scalar multiplication and vector addition
for every component.

Listing 1.1: SAXPY example code in CUDA
1 __global__
2 void saxpy(int n, float a, float *x, float *y)
3 {
4 int i = blockIdx .x* blockDim .x + threadIdx .x;
5 if (i < n) y[i] = a*x[i] + y[i];
6 }
7
8 int main ()
9 {

5

1 Introduction

10 ...
11 int N = 1<<20;
12 cudaMalloc ((void **)&d_x , sizeof(float)*N;
13 cudaMalloc ((void **)&d_y , sizeof(float)*N;
14 cudaMemcpy (d_x , x, N, cudaMemcpyHostToDevice);
15 cudaMemcpy (d_y , y, N, cudaMemcpyHostToDevice);
16
17 // Perform SAXPY on 1M elements
18 saxpy <<<4096, 256>>>(N, 2.0, x, y);
19
20 cudaMemcpy (y, d_y , N, cudaMemcpyDeviceToHost);
21 ...
22 }

A function that is executed on a GPU is called a kernel and is defined by adding
__global__ (line 1) or __device__ to the function declaration. A function executed on
the CPU function can optionally be mark by __host__. If no specifier is used the
function will be a host function (line 8).
For calling the global function saxpy() from the host function main() the syntax

saxpy<<<nGrid, nThread>>>() (line 18) has to be used. This syntax will launch a kernel
which is divided in nGrid blocks, each block consists of nThread threads. Threads and
blocks have internal IDs. They can be used to calculate a unique ID for every thread
in a kernel (line 4).
All threads in the same block perform identical instructions. Figure 1.5 shows a

CUDA program with eight blocks executed on two different GPUs. Each SM can
execute one block. Blocks will be executed parallel on the SM so a GPU with more SM
will automatically execute the code in a shorter time period than a GPU with less SM.

Kernel function calls are asynchronous, so they may return before the device has
completed its execution. To synchronize CPU and GPU execution the function
cudaDeviceSynchronize() has to be called. All CUDA runtime functions including kernel
launches set an internal error code, hence it should be checked after every call. This
does not work for asynchronous calls so they might only be noticed later in the program.

Before calling the kernel, memory has to be allocated (line 12,13) and data have to
be copied from CPU to GPU (line 14,15). After the kernel has finished, the data need
to be copied back to the CPU (line 20). Since memory allocation and copy processes
are slow, one should reuse allocated memory as often as possible and reduce the number
of memory copies to a minimum.

In the next chapter the reconstruction software “Offline” is introduced and the main
bottlenecks are identified. They will then be reimplemented for computation on the
GPU using CUDA.

6

1.3 General Purpose Computing on Graphics Processing Units

Figure 1.5: Execution of a multithreaded CUDA program on two GPUs with a different
number of Streaming Multiprocessors [10].

7

2 The Offline Software Framework

Offline [13] is the C++ Framework developed for the reconstruction of the fluores-
cence and surface detector and was extended for radio-detection starting 2006 [14].
This section will briefly describe the data structure of Offline and the AERA event
reconstruction. Furthermore, results of a performance profiling of the application are
presented.

2.1 Structure of the Offline Framework
The Offline framework can be separated in three different parts as shown in figure
2.1. On the one side, there is the detector description handling information on the
detector like the used hardware. On the other side, there is the detected event data
from individual detectors. The third part are the algorithms from different modules
which combine the event data with the detector description to reconstruct the physical
process. Each module does one processing step of the reconstruction. The order of
the modules can be changed in the ModuleSequence.xml file. The sequence used in this
thesis is shown in appendix A.
Additionally, a variety of utility classes are used for e.g. unit conversions, error

logging and Fourier transformations. Furthermore, there is a bundle of configuration
files for the fine tuning of individual modules.
The event data are stored in the Event class. This class contains among other the

event data from the surface, fluorescence and radio detectors. A closer look at the
REvent class is presented in figure 2.2. The REvent handles the active Stations and
Channels of the event each in a corresponding class. FFT data are stored on both levels
in a FFTDataContainer. Data stored on the Stations represents the physical electric field

Figure 2.1: Separation of data and algorithm of the Offline Framework [15].

8

2.2 Radio Event Reconstruction

Figure 2.2: Structure of the REvent containing the stations and channels of the event [14].

devoid of any detector influence. The Channel data represents the measured data of
one antenna of a station.

2.2 Radio Event Reconstruction
This section shortly describes the individual steps necessary for the reconstruction of a
radio event. First, various modules are used to correct the impact of the used hardware
and to enhance the signal of the two antenna channels. After that, the electric field
vector ~E(t) needs to be extracted from the measured voltage trace. The challenge
here is that the incident direction is calculated from the signal arrival times. But the
arrival time depends on the antenna response of the station which itself depends on
the direction.
Thus, direction and antenna response are reconstructed iteratively from a given

initial direction. The antenna pattern is interpolated for this direction (see chapter
4) and the electric field vector is computed. Then, the arrival time is updated using
the maxima of its Hilbert envelope (see chapter 3) leading to a new shower direction.
This loop is repeated until a certain convergence criterion holds. If this loop does not
converge after 10 steps the event will be skipped. This process is shown in figure 2.3.
The energy of the primary particle is correlated with the electric field strength at

the core and the lateral distribution depends on the mass of the primary particle [15].

2.3 Performace Profiling of Offline
Profiling an Offline run provides detailed information on where most time is spent in the
code. Various profilers are available, each with its own advantages and disadvantages.
Here the Linux kernel profiler “perf” [17] is used for analyzing the CPU code and the
“NVIDIA Visual Profiler (nvvp)” [18] for the GPU code.

9

2 The Offline Software Framework

Figure 2.3: Sketch of the radio event reconstruction. Shown is the iterative reconstruction
of incident direction and antenna response including calculation of the Hilbert
envelope and interpolation of the antenna pattern [16].

For a correct profiling and analysis of an Offline run one has to know how much time
is spent on the reconstruction and how much time is “overhead” for the initialization
of Offline. To determine the overhead, test files are created in which the same event is
written several times. As it is always the same event which is reconstructed the mean
reconstruction time per event should be the same for all file sizes. Due to the overhead
for the initialization of the Offline framework, which is a constant for a complete
reconstruction, the time per event depends on the number of events per file.
In the end of an event reconstruction, Offline prints a small summary containing

information about the time spent in each module and the total real time spent for the
run. Real time means the time which passed between start and finish of the program.
This time includes time spent by other processes and time where the system is waiting
for e.g. I/O operations. Another possibility to measure execution time is using only
the time where the CPU was working. This does not include the computing time on
GPU, hence it is not sufficient in this context.

Here, the total time will be used to evaluate the impact of the individual changes, as
it is the easiest accessible metric. The same file has to be reconstructed several times

10

2.3 Performace Profiling of Offline

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 10 20 30 40 50 60 70 80 90 100

T
im

e
/E

v
e
n

t
[s

]

Number of Events

Figure 2.4: Average time t needed to reconstruct a specific event for different number x of
events per file. The function f(x) = A/x+B is fitted to the data. The dashed
line shows the reconstruction time per event for infinite events per file B.

and the minimal time is used. Since parallel operation of the system can only increase
the used time, the minimal time is the best estimation of the idealized execution time.
Two different test systems are used for the analyzes, a desktop and a cluster system.
Some important technical data of both system and their CPU and GPU are listed in
appendix C.
In figure 2.4 the time per event is plotted as a function of events per file. The

function f(x) = A/x+B is fitted to the data where B is the time per event and A the
overhead time. For small files the overhead has a great impact on the average time per
event. Hence bigger files are needed to analyze the improvement on the reconstruction.
For 50 events per file, the difference between the extrapolated time per event B and
the measured time per event is less than 3%. Therefore this file will be used for the
analysis.
Using the profiler perf, the following two hotspots can be identified in a profiling

run:

1. Around 15% of the time is spent on calculating Fourier transformations. FFTs
are used among others by the RdStationSignalReconstructor module as a part of
the Hilbert envelope for updating the arrival time of the signal. But other radio
modules also need them as they work on the time series and frequency spectrum
of a signal.

2. Interpolations of the antenna patterns need nearly 25% of the time. This is done
in the RdAntennaChannelToStationConverter module.

If this two hotspots could be removed the time per event can at best decrease by 40%.
In the following two chapters GPGPU is used to eliminate these hotspots.

11

3 Fourier Transformations in Offline

In Offline, FFT data are stored in a class named FFTDataContainer. This class contains
both the time series and the frequency spectrum of a signal and marks which one has
been modified latest. To calculate only the necessary Fourier transformations a FFT is
only computed when the FFTDataContainer is asked for the invalid representation. For
calculating a FFT on CPU, the FFTW [19] library is used. This library is wrapped
by an object orientated wrapper in which different classes for the different FFT types
are defined. For e.g. a one dimensional complex to complex Fourier transformation an
object of the class fft1d is created and its fft() method is called.
Fourier transformations can also be calculated efficiently on the GPU with the

cuFFT [20] library. This chapter starts with a comparison between both libraries and
describes different steps in replacing the FFTW with the cuFFT to achieve the best
performance.

3.1 Comparison between cuFFT and FFTW
The NIVIDIA cuFFT library provides an interface alike the FFTW for computing
FFTs on the GPU. For computing a FFT, a “plan” has to be created first which
determines dimension, size and transformation type. Depending on the transform size
different algorithms are chosen for the fastest execution of the specified transformation.
After that, memory is allocated on the GPU and the input values are copied. Then
the FFT can be executed and the results are copied back to the CPU.

To compare the performance of both libraries, Fourier transformations for different
sizes are computed on CPU and GPU and the execution time is compared. The result
is shown in figure 3.1. In figure 3.1a the total execution times of both versions are
plotted for trace lengths between 100 and 1× 109 elements. If just a single FFT is
computed, the trace length must be bigger than 1× 106 to make the GPU execution
faster than the execution on CPU due to initialization of the GPU and cuFFT library
at first API call and the needed memory allocation on GPU.

However, in Offline many FFTs are computed. Hence the initialization time can be
negated and memory will be allocated only once and then reused for all FFTs of the
same size. Therefore, the comparison is repeated without measuring the initialization
and allocation time on the GPU for trace lengths in a range of 100 to 100 000. Time
for copying of memory is still included. This range includes the actually used sizes
in Offline of 10 240 and 40 960 elements. As shown in figure 3.1b the GPU version is
always faster in this setup.
Thus, a global replacement of the FFTW with the cuFFT is expected to yield a

performance improvement, if repeated memory allocation can be avoided.

12

3.2 Integration of cuFFT in Offline

 0.001

 0.01

 0.1

 1

 10

 100

 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
o

m
p

u
ti

n
g

 t
im

e
 [

s
]

Trace length

FFTW
cuFFT

(a) Execution time including the automatic initialization of the GPU at first API call.

 0.1

 1

 10

 100

 100 1000 10000 100000

C
o

m
p

u
ti

n
g

 t
im

e
 [

m
s
]

Trace length

FFTW
cuFFT

(b) Execution time without initialization of the GPU for typical trace lengths used in Offline.
GPU is manually initialized, and the memory is allocated before starting the time
measurement.

Figure 3.1: Comparison of the computing time for a 1D complex to complex Fourier
transformation with cuFFT and FFTW library on the desktop test system.

3.2 Integration of cuFFT in Offline
To enable computation of the FFTs on GPU, the cuFFT is wrapped similar to
the FFTW. Hence, only the included header file of the FFTDataContainer and the
FFTDataContainerAlgorithm has to be changed. In the following, various steps of the

13

3 Fourier Transformations in Offline

Figure 3.2: Sketch of the individual steps for a FFT on the GPU.

cuFFT usage and their performance are described. Each step includes the previous
steps, the time per event is always compared to the baseline.

Naive Implementation
First, a naive implementation of the wrapper is written. This version will allocate

and free the memory on the GPU for every transformation. The individual steps of its
execution are shown in figure 3.2. The left box contains steps performed on the CPU
and the right box shows steps performed on the GPU. Creating an FFT object creates
the corresponding cuFFT plan. When the fft() method is called, memory is allocated
and input data are copied to GPU before the execution. After the execution the result
is copied back to the CPU and memory is freed.

With this implementation the time per event is reduced by around 3.5% from 14.7 s
to 14.2 s on the desktop system. However, on the cluster the time per event has
increased from 13.4 s to 17.2 s by 28%. Notice that this does not correspond to the
above shown FFT comparison. Also on the desktop system the cuFFT should be
slower than the FFTW if memory is always allocated and freed. Thus, the FFTW
wrapper seems to limit the performance of the FFTW in Offline.

Implementation with static memory on the GPU
In the next step, static memory is used for storing data on the GPU to reduce the

number of expensive memory allocation. Before copying the data from the CPU to

14

3.2 Integration of cuFFT in Offline

(a) Parallel execution of the 3 independent FFTs.

(b) Serial execution of the 3 independent FFTs.

Figure 3.3: Screenshots from the nvvp for serial and parallel execution of the FFT, the
shown block in the serial figure is repeated three times.

the GPU it checks if the current array on the GPU is big enough. If this is true the
memory is directly copied, else the memory is reallocated with the needed size.
This implementation reduces the time per event on the desktop system from 14.7 s

to 13.4 s by approximative 10% compared to the baseline but still increases the time
on the cluster from 13.4 s to 13.7 s by approximately 2%.
It is noteworthy that the reconstruction time per event has still increased on the

cluster. The cluster version of figure 3.1b looks similar to the shown desktop plot,
thus the cuFFT should be faster than the FFTW. Possible explanations are internal
compiler optimizations which are applied in Offline but not in the used test programs.

Static memory can be theoretically dangerous if more than one fft object exists, and
their execution functions are called simultaneously, since they are sharing their data
memory. However, this is not possible in the current configuration. The wrapper uses
blocking memory copy hence a fft() method call returns after the complete execution.
This makes it impossible that two fft() methods are executed in parallel.

Dynamic switch between cuFFT and FFTW
In this version a new wrapper file is invented allowing to use both libraries depending

on the trace length. The cuFFT is used for the bigger trace length of 40 960 elements
but the FFTW for 10 240 elements. This leads to the situation that the FFTW library
is compiled by the NVIDIA CUDA Compiler Driver (nvcc) [21]. There is a bug in
the used FFTW version 3.3.3 which will enable quad_precession although it is not
supported by the nvcc. Thus the FFTW needs to be patched until this is fixed in a
newer version. The patch file is included in appendix B.

Now the time per event on the cluster is again on baseline level with 13.4 s but on the
desktop the improvement has reduced to 8% and a time per event of 13.6 s compared
to the 14.7 s of the baseline.

FFTs on station level
The Fourier transformations on station level consist of three independent sub-FFTs,

one for each component of the electric field vector. Here different techniques for
their execution are compared. First, there is the current serial execution with one fft
object and three execution calls. The second version uses the cuFFT batch mode for
computing the FFTs. Third, they are executed in parallel using different streams and
asynchronous memory copy for each sub-FFT.

15

3 Fourier Transformations in Offline

In figure 3.3 the difference between the parallel and serial execution is depicted
by screenshots from the nvvp. In the serial version all internal kernel launches and
memory copies are executed in order one after another. In the parallel execution,
memory copies are overlapped by computing due to the asynchronous copy calls. The
different kernels are executed out of order but do not overlap, because a single kernel
always occupies the GPU entirely.

Small test programs are used to measure the total time of the three FFTs. They are
executed several times and the minimal execution times are compared. For the parallel
execution the minimal time is 224.1ms, the serial execution needs minimal 226.7ms
and the batch mode 229.9ms. The differences are small, nevertheless parallel version
is tested in Offline as it is the fastest one. On the desktop system this change has no
impact on the reconstruction time per event, whereas on the cluster the time per event
has increased from 13.4 s to 13.5 s.

Upsampling Channel trace length to next power of 2
The cuFFT and also the FFTW use different algorithms depending on the trace

length, the best performance of the cuFFT is achieved if the trace length is a power of
2 [20]. Thus the RdChannelUpsampler module is extended for upsampling the trace to
the next power of two instead of a fixed factor. Again small test programs are used to
measure the time for unpadded and padded execution with both libraries.

The minimal execution time of the FFTW has increased from 150ms to 158ms due
to the padding, whereas it has reduced from 555ms to 201ms when using the cuFFT.
Time for memory allocation is included in the measured cuFFT times, hence it seems
to be slower than the FFTW.
Upsampling the Channel trace to a power of two has reduced the time per event

on the desktop from 14.7 s to 12.5 s by 15% and on the cluster from 13.4 s to 12.8 s by
5%.

The time per event of all steps are shown in figure 3.4. Best performance is achieved
when using static memory and the modified upsampling to a power of two. The switch
between the FFTW and cuFFT library and different execution modes for station FFTs
have no effect or partially increased the time per event. Thus, these steps are removed.
The ratio of the baseline and improved implementation, called speedup, is used to
evaluate the impact of the improvement. The resulting change in the time per event
and the calculated speedup of the final implementation are shown in figure 3.5.

3.3 Hilbert Envelope
Several FFTs are used in context of the calculation of the Hilbert envelope. This
allows a significant speedup using a suited implementation on the GPU, which will be
described in this section.
The radio signal x(t) is an oscillating signal as shown by figure 3.6. For the event

reconstruction the time with the maximal electric field strength is needed. This does
not necessarily correspond with the maximal value of the reconstructed field because

16

3.3 Hilbert Envelope

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

baseline

naive

static m
em

ory

FFT sw
itch

station FFTs

channel

 upsam
pling

T
im

e
/E

v
e
n

t
[s

]

Improvement

Time per Event Cluster

Time per Event Desktop

Figure 3.4: Time per event for all FFT improvement steps, each step is based on the
previous.

 0

 5

 10

 15

 20

Baseline FFT
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

T
im

e
/E

v
e

n
t

[s
]

S
p

e
e
d

u
p

Improvement

Time per Event Cluster

Time per Event Desktop

Speedup Cluster

Speddup Desktop

Figure 3.5: Comparison of the time per event and the Speedup after final implementation
of cuFFT.

of the possible zero crossing of the electric field of the incoming electric-magnetic wave
at the position of the true maximum. An estimation is given by the Hilbert envelope
E(t) [15].
The Hilbert envelope E(t) of a signal x(t) is defined as

E(t) =
√
x2(t) + (H(x(t)))2 (3.1)

17

3 Fourier Transformations in Offline

Figure 3.6: Example of a east-west component of a reconstructed electric field vector and
the Hilbert envelope [15].

where H(x(t)) is the Hilbert transformed of x(t). The Hilbert transformation of a signal
x(t) shifts the negative frequencies by 90° and the positive frequencies by −90°. In
this context negative frequencies are frequencies left from the median of the frequency
spectrum, positive frequencies are right from it. To compute the envelope a time signal
is Fourier transformed to the frequency representation. Then the frequencies are shifted
and converted back to the time domain with an inverse Fourier transformation.
In the current implementation the data are copied to the GPU and back for the

forward FFT and again for the inverse FFT. Phase shift and square root are calculated
on CPU. However, it is more efficient to compute the whole envelope on the GPU
for two reasons. First, the phase shift and the normalization are similar instructions
operating on multiple data and can thus be calculated efficiently in parallel. Second,
only half of the memory copies are necessary if the total calculation is done on the
GPU. The difference of both implementations is shown in figure 3.7.
With the modified Hilbert Envelope, 11.6 s are needed per event on the desktop

system which is an reduction of 7% compared to the best cuFFT from above. On the
cluster one event needs 12.4 s which is 5% faster than before.
In a further step CPU-GPU parallelism is added. So far, the CPU is working in

the RdStationSignalReconstructor until the Hilbert envelope is computed. During that
period the GPU is idle. Then it starts computing the envelope while the CPU is idle
waiting for the result.

To keep both working at he same time the structure of the module is changed.
Currently, the RdStationSignalReconstructor module contains a loop over all stations of
an event. For each station the Hilbert envelope is computed and the pulse parameters
on the Station level are determined. With the new structure the envelope of the first
station is computed outside the loop. In the loop the pulse parameters of this station

18

3.3 Hilbert Envelope

(a) Implementation with just FFTs on
GPU.

(b) Implementation with total execution
on GPU.

Figure 3.7: Structure of the Hilbert Envelope execution in different versions.

(a) Old structure, no CPU-GPU paral-
lelism.

(b) New structure with CPU-GPU paral-
lelism.

Figure 3.8: Structure of the Signal Reconstruction module.

19

3 Fourier Transformations in Offline

 0

 5

 10

 15

 20

Baseline FFT Hilbert
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

T
im

e
/E

v
e

n
t

[s
]

S
p

e
e
d

u
p

Improvement

Time per Event Cluster

Time per Event Desktop

Speedup Cluster

Speddup Desktop

Figure 3.9: Comparison of the time per event and the Speedup after final implementation
of cuFFT and improved Hilbert envelope.

are determined on CPU while the envelope of the next Station, if it exists, is calculated
on the GPU. Both structures are depicted in figure 3.8. Additionally, a Hilbert envelope
on station level consists of three independent sub-envelopes like the station FFT. Each
one can be calculated parallel on the GPU.

Combining both effects the time per event has reduced to 11.8 s (10%) on the cluster
and to 11.3 s (-9%) on the desktop system. The new times per event and the achieved
speedup with the improvements for FFTs and Hilbert envelopes are shown in figure
3.9.

20

4 Interpolation of the antenna pattern

The response V (t) of an antenna to an incoming electric field ~E(t) depends on the
incident direction of the field. This can be parameterized with the vector effective
length (VEL) ~H of the antenna in the frequency domain by

V(ω) = ~H(ω) · ~E(ω) (4.1)

where V , ~H and ~E are the Fourier transformed of V , ~H and ~E. In a spherical coordinate
system with zenith angle θ and azimuth angle φ this can be written as

V1(ω) = H1,θ(ω)Eθ(ω) +H1,φ(ω)Eφ(ω) (4.2)
V2(ω) = H2,θ(ω)Eθ(ω) +H2,φ(ω)Eφ(ω)

if the ~er points in the incident direction of the electric wave. Here, V1,2 are the voltages
measured in the two antennas of a AERA station. One antenna is east-west and the
other north-south polarized. Since the shower signal is a transverse wave the Er(ω)
component is always zero. Solving this equation system for the electric field leads to [8]

Eθ(ω) = V1(ω)H2,φ(ω)− V2(ω)H1,φ(ω)
H1,θ(ω)H2,φ(ω)−H1,φ(ω)H2,θ(ω) (4.3)

Eφ(ω) = V2(ω)−H2,θ(ω)Eθ(ω)
H2,φ(ω) .

Hence, the VEL has to be known to reconstruct the electric field vector from the
measured voltage trace. This is achieved by using simulated or measured antenna
response for discrete values of φ, θ and ω and interpolate this pattern for the needed
directions and wavelengths. This is done in the AntennaType class called from the
RdAntennaChannelToStationConverter module. Examples of an antenna response for a
fixed frequency are shown in figure 4.1.

4.1 Interpolation with texture memory
Interpolations are one of the fundamental tasks of a GPU as they are needed e.g
to display textures in games. A special memory area is used allowing interpolation
on dedicated hardware to make it particularly fast. In CUDA this memory is called
texture memory.

In the baseline implementation the antenna pattern is a struct containing vectors of
the simulated φ, θ and ω values. A map called antenna response is used to get the
VEL for a specific response key. This response key is a tuple of integers, each one the

21

4 Interpolation of the antenna pattern

 0
 1

0
 2

0
 3

0
 4

0
 5

0
 6

0
 7

0
 8

0
 9

0

 0
 5

0
 1

0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

 3
5
0

−
4

−
2 0 2 4 6

C
h

a
n

n
e
l 1

 V
E

L
 T

h
e
ta

 re
a
l

T
h

e
ta

 [d
e
g

]
P

h
i [d

e
g

]
 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 0
 5

0
 1

0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

 3
5
0

−
4

−
2 0 2 4 6 8

 1
0

C
h

a
n

n
e
l 1

 V
E

L
 T

h
e
ta

 im
a
g

T
h

e
ta

 [d
e
g

]
P

h
i [d

e
g

]

 0
 1

0
 2

0
 3

0
 4

0
 5

0
 6

0
 7

0
 8

0
 9

0

 0
 5

0
 1

0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

 3
5
0

−
6

−
4

−
2 0 2 4 6

C
h

a
n

n
e
l 1

 V
E

L
 P

h
i re

a
l

T
h

e
ta

 [d
e
g

]
P

h
i [d

e
g

]
 0

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

 0
 5

0
 1

0
0

 1
5
0

 2
0
0

 2
5
0

 3
0
0

 3
5
0

−
4

−
2 0 2 4

C
h

a
n

n
e
l 1

 V
E

L
 P

h
i im

a
g

T
h

e
ta

 [d
e
g

]
P

h
i [d

e
g

]

F
igure

4.1:Exam
ple

ofan
antenna

response
pattern

at
ν

=
35M

H
z.

22

4.1 Interpolation with texture memory

index in the vectors for given φ, θ and ω. Additionally, the lowest and highest value in
each vector and the size of each vector are stored. Each pattern is only buffered and
stored once at first usage. After that it is stored in a static map and all antennas of
the same type are using the same pattern.

To copy the data to the GPU this map is converted to two three dimensional arrays,
one for the θ and one for the φ component of the VEL. With the header information
of each pattern, the response map is asked for all stored VEL, which are then written
in the arrays. The old data structure is not replaced by the new arrays because this
would require to modify the complete implementation of the AntennaType class and to
verify its correctness.

The PatternTexture class is added to maintain the textures on the GPU. The VEL
arrays are copied to the GPU and stored in two objects of type cudaArray. A texture is
then binded to each cudaArray. Another static map stores one PatternTexture object
for all antennas of the same type. The conversion to the GPU is done only once and
can be neglected, as it needs in total less than 1 s. However, it would simplify the code
if the old data structure could be completely replaced by the new one.

The biggest pattern consists of 98 frequency values, 31 theta values and 49 phi values,
so 148 862 complex values in single precision have to be stored for each component
of the VEL. Assuming a size of float of 4Byte the total size of the biggest pattern is
2.4MB. This is small compared to the total available memory size of a few GB on
modern GPUs and much below the maximal size of a 3D texture of 2048×2048×2048
or 4096×4096×4096 elements depending on the device [10].
Reading data from a texture is called a “fetch”. The texture can be configured to

support different fetch modes which are described in the following. By setting the
filter mode to cudaFilterModeLinear the texture T interpolates a fetched point linear
by the eight surrounding grid points. This is only possible for floating point textures
in single precision. The influence of using single precision instead of double precision is
discussed in the following section. The returned value of the fetch tex(x,y,z) is given
by

tex(x, y, z) = (1− α)(1− β)(1− γ)T [i, j, k] + α(1− β)(1− γ)T [i+ 1, j, k] (4.4)
+ (1− α)β(1− γ)T [i, j + 1, k] + αβ(1− γ)T [i+ 1, j + 1, k]
+ (1− α)(1− β)γT [i, j, k + 1] + α(1− β)γT [i+ 1, j, k + 1]
+ (1− α)βγT [i, j + 1, k + 1] + αβγT [i+ 1, j + 1, k + 1].

Here, the weights α, β, γ and the indexes i, j, k of the surrounding grid points are
defined as

xB = x− 0.5 α = frac(xB) i = floor(xB)
yB = y − 0.5 β = frac(yB) j = floor(xB)
zB = z − 0.5 γ = frac(zB) k = floor(xB).

α, β and γ are stored in 9 bit fixed point format with 8 fractional bits [10]. The index
order of the texture is reverse to the array on CPU. Thus, if one wants to fetch a texture

23

4 Interpolation of the antenna pattern

Figure 4.2: Differences between the interpolated pattern on the GPU and CPU. Shown is
the relative deviation (HCPU

φ,θ −HGPU
φ,θ)/HCPU

φ,θ

with tex(x,y,z), the CPU array has to be allocated as array[z][y][x]. Additionally,
0.5 has to be added to all coordinates to move the sample point to the middle of the
pixel.
Alternatively the filter mode could be set to cudaFilterModePoint. In this mode a

fetch would return the value of the nearest point in the texture. This would correspond
to the optionally available lookup implementation on the CPU.
In figure 4.2 the relative differences (HCPU

φ,θ −HGPU
φ,θ)/HCPU

φ,θ between both interpo-
lations are shown for all components of the pattern. Typically, the differences are
below ±0.8%, but there are also small regions with a greater relative difference. They
correspond to the zero crossing of the pattern and are evenly distributed around zero.
An example of the relative differences of an antenna response for a fixed direction
calculated using the CPU and the CPU implementation are shown in figure 4.3. Again,
the differences are typically below ±0.8%.
The RdAntennaChannelToStationConverter module has to be modified to profit from

the parallel interpolation on the GPU. In the baseline implementation the antenna
response is computed in a loop over the individual frequencies for both channels. Using
the texture interpolation this would require launching an individual kernel for every
frequency. However, it is more efficient to compute the antenna responses for all
frequencies in parallel on the GPU.
With the texture interpolation on the GPU, the reconstruction time per event has

been reduced from 13.4 s to 9 s on the cluster. This is an reduction by 25% compared
to the Hilbert version and 33% compared to the baseline. On the desktop system the
time per event has reduced from 14.7 s to 7.2 s. This is an reduction by nearly 35%

24

4.1 Interpolation with texture memory

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 30 35 40 45 50 55 60 65 70 75 80

D
if

fe
re

n
c
e

 e
ff

e
c
ti

v
e
 l

e
n

g
th

 [
%

]

Frequency [MHz]

Channel 2 VEL Theta

real part
imag part

−2

−1.5

−1

−0.5

 0

 0.5

 1

 30 35 40 45 50 55 60 65 70 75 80

D
if

fe
re

n
c
e
 e

ff
e
c
ti

v
e
 l
e
n

g
th

 [
%

]

Frequency [MHz]

Channel 2 VEL Phi

real part
imag part

Figure 4.3: Real and imaginary part of the antenna response for θ ≈ 52° and φ ≈ 273°
calculated on CPU and GPU.

compared to the Hilbert version and 51% compared to the baseline. This is visualized
again in figure 4.4.
This Offline version is analyzed by the nvvp to examine the GPU usage. The

computing time of a kernel is low compared to the time needed for memory copy
with a ratio of approximately 1.32. Just 7% of the memory copy is overlapped by
computation. Additionally, the memory copy throughput is low. There are never two

25

4 Interpolation of the antenna pattern

 0

 5

 10

 15

 20

Baseline FFT Hilbert Interpolation
 0

 0.5

 1

 1.5

 2

 2.5

T
im

e
/E

v
e

n
t

[s
]

S
p

e
e
d

u
p

Improvement

Time per Event Cluster

Time per Event Desktop

Speedup Cluster

Speddup Desktop

Figure 4.4: Comparison of the time per event and the Speedup after final implementation
of cuFFT, improved Hilbert envelope and interpolation.

kernels executed in parallel and the multiprocessor of the GPU is mostly idle. Hence
the GPU usage can still be increased.

4.2 Comparison of Single and Double Precision
The trilinear interpolation on CPU is identical to 7 successive linear interpolations

y = y0 + (y1 − y0) · x− x0

x1 − x0
. (4.5)

Evaluating this equation will produce uncertainties due to the limited machine accuracy
ε. A rough estimation of the resulting uncertainty ∆y is given by

||∆y||
||y||

≤ n · ε (4.6)

where n = 6 is the amount of elementary operations in each interpolation.
The IEEE 754 standard defines the machine epsilon for single precision to ε =

2−24 ≈ 6× 10−8 and for double precision to ε = 2−53 ≈ 1.1× 10−16. Hence the biggest
possible uncertainty of the trilinear interpolation is 4.7× 10−13 % for double precision
and 2.5× 10−4 % for single precision. Using the texture interpolation of equation (4.4)
51 operations are needed. Thus the uncertainty is ≤ 3× 10−4 %. As this is far below of
the other uncertainties in the reconstruction switching from double to single precision
has no negative effect on the reconstruction.

26

5 Conclusion

In this bachelor thesis performance improvements of the Auger Offline Software Frame-
work for the event reconstruction of the Auger Engineering Radio Array have been
developed. The presented solutions enable computation of CPU intensive tasks on the
GPU.

The calculation of Fourier transformations and the interpolation of antenna response
patterns have been identified as the two biggest hotspots in the AERA event reconstruc-
tion by a performance profiler. Both tasks have been reimplemented for computation
on the GPU while keeping the interface of the modified classes and the structure of
Offline intact.

Of several approaches that have been tested, the best performance has been achieved
using static memory for storing the FFT data on the GPU and an upsampling of the
trace length to a power of 2. Additionally the computation of the Hilbert envelope has
been implemented to be executed solely on the GPU. Together, this yields a speedup
of approximately 1.14 to 1.31 depending on the test system.

In a further step, the interpolation of the antenna pattern has been implemented on
the GPU. Here, the dedicated memory and interpolation circuits available on GPUs
for interpolation of textures are used. Using the texture interpolation the speedup has
been increased to approximately 1.49 to 2.04.
Further speedup could be achieved by e.g. changing the FFTDataContainer to store

the traces of all stations in the event permanently on the GPU and use them for the
full reconstruction loop. However, this requires greater changes in Offline which have
been avoided in this minimal invasive approach.
The presented improvements are published in a separate Offline branch. GPGPU

optimizations can optionally be enabled with a compiler flag, if the CUDA Toolkit is
found.

27

Appendices

A Modulesequence

<moduleControl >

<loop numTimes =" unbounded ">

<module > EventFileReaderOG </module >
<module > RdEventPreSelector </module >

<module > RdEventMerger </module >

<module > EventCheckerOG </module >
<module > SdQualityCutTaggerOG </module >
<module > SdPMTQualityCheckerKG </module >
<module > TriggerTimeCorrection </module >
<module > SdCalibratorOG </module >
<module > SdBadStationRejectorKG </module >
<module > SdSignalRecoveryKLT </module >
<module > SdEventSelectorOG </module >
<module > SdPlaneFitOG </module >
<module > LDFFinderKG </module >
<try >

<module > SdHorizontalReconstruction </module >
</try >

<module > RdEventInitializer </module >
<module > RdStationRejector </module >
<module > RdChannelADCToVoltageConverter </module >
<module > RdChannelSelector </module >
<module > RdChannelPedestalRemover </module >
<module > RdChannelResponseIncorporator </module >
<module > RdChannelBeaconSuppressor </module >
<module > RdChannelTimeSeriesTaperer </module >
<module > RdChannelBandstopFilter </module >
<module > RdChannelUpsampler </module >

<loop numTimes =" unbounded ">
<module > RdDirectionConvergenceChecker </module >
<module > RdAntennaChannelToStationConverter </module >
<module > RdStationSignalReconstructor </module >
<module > RdClusterFinder </module >
<module > RdPlaneFit </module >

</loop >

B FFTW Patch

<module > RdLDFMultiFitter </module >
<module > RdChannelRiseTimeCalculator </module >
<module > RdStationEFieldVectorCalculator </module >
<module > RdEventPostSelector </module >

<try >
<module > FdCalibratorOG </module >
<module > FdEyeMergerKG </module >
<module > FdPulseFinderOG </module >
<module > FdSDPFinderOG </module >
<module > FdAxisFinderOG </module >
<module > HybridGeometryFinderOG </module >
<module > HybridGeometryFinderWG </module >
<module > FdApertureLightKG </module >
<module > FdEnergyDepositFinderKG </module >
<module > FdProfileReconstructorKG </module >

</try >

<module > RdStationTimeSeriesWindowCutter </module >
<module > RdStationTimeSeriesTaperer </module >
<module > EventFileExporterOG </module >
<module > RecDataWriterNG </module >

</loop >

</ moduleControl >

B FFTW Patch

--- ../../ ape/ External /fftw /3.3.3/ include /fftw3.h~ 2014 -07 -10
14:45:39.359386088 +0200

+++ ../../ ape/ External /fftw /3.3.3/ include /fftw3.h 2014 -07 -10
14:46:22.315386004 +0200

@@ -357,7 +357 ,7 @@
/* __float128 (quad precision) is a gcc extension on i386 , x86_64 ,

and ia64
for gcc >= 4.6 (compiled in FFTW with --enable -quad - precision) */

#if (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)) \
- && !(defined (__ICC) || defined (__INTEL_COMPILER)) \
+ && !(defined (__ICC) || defined (__INTEL_COMPILER) || defined (

__CUDACC__)) \
&& (defined (__i386__) || defined (__x86_64__) || defined (__ia64__))

if ! defined (FFTW_NO_Complex) && defined (_Complex_I) && defined (
complex) && defined (I)

/* note: __float128 is a typedef , which is not supported with the
_Complex

29

Appendices

C Test Systems

Table 1: Comparison of the desktop and cluster test systems [22, 23, 24, 25]
Desktop Cluster

Operating system Debian GNU/Linux Debian GNU/Linux
CUDA Toolkit version 6.0 4.2
RAM 8GB 48GB
CPU 1x AMD A8-6600K 24x Intel Xeon X5650
Cores 4 6
Threads 4 12
Multiprocessing Uniprocessor Up to 2 processors
L1 cache size (instruction) 2 x 64KB instruction 6 x 32KB instruction
L1 cache size (data) 4 x 16KB data 6 x 32KB data
L2 cache size 2 x 2MB 6 x 256KB
L3 cache size None 12MB
GPU 1x GeForce 750 Ti 4x Tesla M2090
Cores 640 512
Processor clock 1020MHz base clock

1085MHz boost clock 1.3GHz
Memory clock 5.4Gbps 1.85GHz
Memory Interface GDDR5 GDDR5
Memory Interface width 128bit 384 bit
Memory Bandwidth 86.4GB/s 177GB/s
Memory size 2048MB 6GB

30

References

[1] TOP500 list. June 14. url: http://www.top500.org/lists/2014/06/ (visited
on 09/19/2014).

[2] The GREEN 500 List. June 14. url: http://www.green500.org/lists/
green201406 (visited on 09/19/2014).

[3] K. Kotera and A. V. Olinto. The Astrophysics of Ultrahigh-Energy Cosmic Rays.
Annual Review of Astronomy and Astrophysics 49 (2011), pp. 119–153. doi:
10.1146/annurev-astro-081710-102620. arXiv: 1101.4256 [astro-ph.HE].

[4] A. Schaeffer. LHCf sheds new light on cosmic rays. url: http://cds.cern.
ch/journal/CERNBulletin/2011/18/News%20Articles/1345733 (visited on
09/19/2014).

[5] I. Allekotte et al. The Surface Detector System of the Pierre Auger Observatory.
Nuclear Instruments and Methods in Physics Research A586 (2008), pp. 409–420.
doi: 10.1016/j.nima.2007.12.016. arXiv: 0712.2832 [astro-ph].

[6] The Pierre Auger Collaboration. The Fluorescence Detector of the Pierre Auger
Observatory. Annual Review of Astronomy and Astrophysics 49 (2009), pp. 119–
153. doi: 10.1146/annurev-astro-081710-102620. eprint: 0907.4282 (astro-
ph.IM).

[7] A. Aab et al. Probing the radio emission from air showers with polarization
measurements. Physical Review D89 (2014), p. 052002. doi: 10.1103/PhysRevD.
89.052002. arXiv: 1402.3677 [astro-ph.HE].

[8] P. Abreu et al. Antennas for the detection of radio emission pulses from cosmic-ray
induced air showers at the Pierre Auger Observatory. Journal of Instrumentation
7.10 (2012), P10011.

[9] T. Winchen. The Principal Axes of the Directional Energy Distribution of Cosmic
Rays Measured with the Pierre Auger Observatory. PhD thesis. RWTH Aachen
University, 2013.

[10] CUDA C Programming Guide. NVIDIA. 2014. url: http://docs.nvidia.com/
cuda/cuda-c-programming-guide/ (visited on 09/19/2014).

[11] OpenCL - The open standard for parallel programming of heterogenous systems.
url: https://www.khronos.org/opencl/ (visited on 09/19/2014).

[12] M. Harris. Six Ways to SAXPY. url: http : / / devblogs . nvidia . com /
parallelforall/six-ways-saxpy/ (visited on 09/24/2014).

31

http://www.top500.org/lists/2014/06/
http://www.green500.org/lists/green201406
http://www.green500.org/lists/green201406
http://dx.doi.org/10.1146/annurev-astro-081710-102620
http://arxiv.org/abs/1101.4256
http://cds.cern.ch/journal/CERNBulletin/2011/18/News%20Articles/1345733
http://cds.cern.ch/journal/CERNBulletin/2011/18/News%20Articles/1345733
http://dx.doi.org/10.1016/j.nima.2007.12.016
http://arxiv.org/abs/0712.2832
http://dx.doi.org/10.1146/annurev-astro-081710-102620
0907.4282
http://dx.doi.org/10.1103/PhysRevD.89.052002
http://dx.doi.org/10.1103/PhysRevD.89.052002
http://arxiv.org/abs/1402.3677
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://www.khronos.org/opencl/
http://devblogs.nvidia.com/parallelforall/six-ways-saxpy/
http://devblogs.nvidia.com/parallelforall/six-ways-saxpy/

References

[13] S. Argiro et al. The Offline Software Framework of the Pierre Auger Observatory.
Nuclear Instruments and Methods in Physics Research A580 (2007), pp. 1485–
1496. doi: 10.1016/j.nima.2007.07.010. arXiv: 0707.1652 [astro-ph].

[14] P. Abreu et al. Advanced functionality for radio analysis in the Offline software
framework of the Pierre Auger Observatory. Nuclear Instruments and Methods in
Physics Research A 635 (2011), pp. 92–102. doi: 10.1016/j.nima.2011.01.049.
arXiv: 1101.4473 [astro-ph.IM].

[15] C. Glaser. Energy Measurement and Strategy for a Trigger of Ultra High Energy
Cosmic Rays Measured with Radio Technique at the Pierre Auger Observatory.
MA thesis. RWTH Aachen University, 2012.

[16] M. Gottowik, J. Rautenberg, and T. Winchen. Prospects of GPGPU in the Offline
Software Framework. In GPU Computing in High Energy Physics Workshop. 2014.

[17] Perf Wiki. url: https://perf.wiki.kernel.org/index.php/Main_Page
(visited on 09/19/2014).

[18] NVIDIA Visual Profiler. url: https : / / developer . nvidia . com / nvidia -
visual-profiler (visited on 09/19/2014).

[19] FFTW Home Page. url: http://www.fftw.org/ (visited on 09/22/2014).
[20] cuFFT. url: https://developer.nvidia.com/cuFFT (visited on 09/22/2014).
[21] NVIDIA CUDA Compiler Driver NVCC. url: http://docs.nvidia.com/cuda/

cuda-compiler-driver-nvcc/#axzz3DkaNiDPu (visited on 09/19/2014).
[22] url: http://www.cpu-world.com/CPUs/Bulldozer/AMD-A8-Series%20A8-

6600K%20-%20AD660KWOA44HL.html (visited on 09/22/2014).
[23] url: http://www.cpu- world.com/CPUs/Xeon/Intel- Xeon%20X5650%20-

%20AT80614004320AD%20(BX80614X5650).html (visited on 09/22/2014).
[24] url: http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-750-

ti/specifications (visited on 09/22/2014).
[25] url: http : / / www . nvidia . com / docs / IO / 43395 / Tesla - M2090 - Board -

Specification.pdf (visited on 09/22/2014).

32

http://dx.doi.org/10.1016/j.nima.2007.07.010
http://arxiv.org/abs/0707.1652
http://dx.doi.org/10.1016/j.nima.2011.01.049
http://arxiv.org/abs/1101.4473
https://perf.wiki.kernel.org/index.php/Main_Page
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
http://www.fftw.org/
https://developer.nvidia.com/cuFFT
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#axzz3DkaNiDPu
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#axzz3DkaNiDPu
http://www.cpu-world.com/CPUs/Bulldozer/AMD-A8-Series%20A8-6600K%20-%20AD660KWOA44HL.html
http://www.cpu-world.com/CPUs/Bulldozer/AMD-A8-Series%20A8-6600K%20-%20AD660KWOA44HL.html
http://www.cpu-world.com/CPUs/Xeon/Intel-Xeon%20X5650%20-%20AT80614004320AD%20(BX80614X5650).html
http://www.cpu-world.com/CPUs/Xeon/Intel-Xeon%20X5650%20-%20AT80614004320AD%20(BX80614X5650).html
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-750-ti/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-750-ti/specifications
http://www.nvidia.com/docs/IO/43395/Tesla-M2090-Board-Specification.pdf
http://www.nvidia.com/docs/IO/43395/Tesla-M2090-Board-Specification.pdf

	Title
	Contents
	Introduction
	Cosmic Rays and the Pierre Auger Observatory
	The Auger Engineering Radio Array
	General Purpose Computing on Graphics Processing Units

	The Offline Software Framework
	Structure of the Offline Framework
	Radio Event Reconstruction
	Performace Profiling of Offline

	Fourier Transformations in Offline
	Comparison between cuFFT and FFTW
	Integration of cuFFT in Offline
	Hilbert Envelope

	Interpolation of the antenna pattern
	Interpolation with texture memory
	Comparison of Single and Double Precision

	Conclusion
	Appendices
	Modulesequence
	FFTW Patch
	Test Systems

	References

